Generating Java Class Filesfrom Smalltalk Objects

Author: Andrew Eidsness

Supervisor: Dr. W.R. LaLonde, B.A.Sc., M.A.Sc., Ph.D.
Date: April 19, 1999

Version: 11

Prepared For: Carleton University course 95.495B (Honour’s Project)

© copyright Andrew Eidsness, 1997-1999

Generating Java Class Files from Smalltalk Objects Page i

Preface

1. Abstract

Smalltalk is a mature object oriented language. Y ears of development have yielded a powerful,
robust development environment that is suitable for avariety of projects. The financial sector
appreciates its rapid development capabilities, as well as the ease with which changes can be
implemented. At the other end of the spectrum, the embedded processing community likes the
byte code interpreted nature of the language. A powerful VM can be used for development, and a

custom VM can be written to run the same code in an embedded system.

Whilethisisal good, twenty years of development has not produced a standard Smalltalk VM.

The market is fragmented by several vendors, all producing a competing (and expensive) product.

The Java language was founded on many of the same principles as Smalltalk, indeed many of its
capabilities were taken from Smalltalk. Javais an object oriented language that is compiled to

byte code. This byte code can be run on any machine implementing the proper code interpreter.
Therapidly growing popularity of Java can be attributed to the availability of interpretersfor a

wide variety of platforms. Java is still in its infancy — performance, features, etc. can only
improve. Additionally, Sun appears to be strong enough politically to prevent the Java market

from becoming fragmented.

Java really consists of two components. There is a language (Java) and a byte code specification
(Java Virtual Machine). We can consider the Java VM to be nothing more than a new platform
(similar to any new product line; e.g., Sparcl10, Sparc 2, etc). The most common way of
generating Java byte code is to compile it from programs written in the Java language. However,

the language is fully decoupled from the byte code, and this need not be the case. This project

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page i

proposes that it is possible to generate Java byte code from the Smalltalk syntax. Programs
would continue to be written in the full Smalltalk environment, then this tool could be used to

generate afully functioning Java system.

2. Acknowledgements

| would like to thank Dr. Lalonde for his advice and encouragement throughout this project,

especialy during the preparation of this paper.

VisuaWorks is aregistered trademark of ObjectShare Inc.(formerly ParcPlace-Digitalk Inc).
Javais aregistered trademark of Sun Microsystems, Inc. All other product and company names

and logos are trademarks or registered trademarks of their respective companies.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page iii

3. Tableof Contents

[Y O SRR |
N =11 1 = 7Y o LSRR |
2. ACKNOWLEDGEMENTS .. eiiiietttieiettetesiiteresesssetssassesssasaeesaassssssaaseessaseeasasssesssaassessasesesssssssssassssesssenesn 1]
R IV = =X o = 000V = N =TSO 11l
4, LIST OF FIGURES ...uuttiiiiiiiiiiitieeies e s esiibree e e e e s e tesabaaa e e e e e et esababaeeseessasaabaeeeeaese s sabaseeeeeeesassbabaeesesesanararaness \%
L T I o1 @) o 1Y =] I s T OO RN \i!

R N I =30 15 16 L I 1 1 1
1.1 SUPPORTING SMALLTALK ON A NEW PLATFORM ...uttiiiiiiiiiiiiiiiiee e ieitrieee e s esiarseeeesssesnnbanesesssessnnnes 2
1.2 DOCUMENT OVERVIEW oeeeiiiiiiiittteeeieeeseiiutseeeesssessssssesesssssassssssesssssssssssssssssssasssssssssesssenssssssssesssessssnes 4

A /N I = (O] 10 I @ 1€ 2R 5
b2 R £ N =00 o 10T T S 5
2.2 IMISCELLANEOUS DETAILS ..eiiiiiiiiittteiiee e e e siitae it e e s e e s ebastees e s e s e bbb s e esssssessbabasesesssessbbaneseassessssbasseessseias 5

221 Garbage COlECIION.coeieiereeeete ettt b e e b et b e e e b ebe e 6
2.2.2 Private VS. PUDIIC IMEIMDEIS........viiiiceeie ettt te s ettt e ettt e s s tae e s s st e e s s este s s srenaessaeneean 6
2.2.3 Dynamic Binding, Polymorphism, and TYPES........cccereirireinireiseseeese st 7
B S 1y 01 = g (oL SRR 7
R R = 7= Y o T PRSP R PR PPPRPP 8
2.2.6 The Smalltalk #perform: Method...........ccccveiiiiiie i e 9
227 Method SElEeCtOr MaPPING......civeeeeeiesesisestesreseeae e sses e seesresseeseeseeseestessessesseeseeseessensesseessens 9
A TS 1= =L BT 4 1 Y= 10
2.3 JAVA CLASSFILES.....iiiccttteteee e e ieitttte e e e e e s ettt e e e e e e s e s iaab e e et e e e s esaba b aaeeeeesesaaabaseeeaesesaasbbaeeesssesaabasanesanenn 11
2.3 1 NAUITIESPACESeevetiireereeie ettt sttt e e e bbbt st e e e e s aear e r e sbe e b e e e e reseeen e e renre e nenrenre e 11
232 Object and INNEITTANCEccceiieiiieeeeie e 11
R R T O =15y 1 1= SRR 12
234 Graphical INtEITACES......cccciieieeeriee ettt et b e 12
D I = S O 13
24.1 DoesNotUNAerstand EXCEPLION.ccveereirerieenie ettt sttt 15
S ¥ 10100°2 PO PP SU PP 16
P T = 110 T = T O OP PR 17
2R T00 R g 110 o L1 o TR 17
S @ Y QY 1= YV o IS o [V o o 17
ST T = oot g Y= U= 11 o o R 18
2531
2532
25.4 Variable Accessing and Modification
2541 CritiQUE O SCOPEJAVAL.....ceuereeireeteisres st sttt r ettt e et nn e r e nn e nnne 22
255 Returning fromM BIOCKScccciiiieiectirieeesie st st e e s e st sa et sresresne e e enaeneenne e 23
2551 [a0 o [0ox oo OSSR 23
2552 Implementation of IMPliCit RELUMNS............cciiiiiiicceccese et e 24
2553 Implementation of EXPliCIt REIUMNS..........cccciiiiiiiciceccccse et e 24
256 SUMITIIY ..ot r et b e e e Rt E e s bt b e e e e e e n e r e s r e e e r e re e 26
2.6 SMALLTALK CLASSVS. JAVA STATIC c.iiiiiiitttiieiee e ieiiitreeeesssesssstaeeeesssesssstssesesssssssssssssesssssssssssssessssins 27
2.6.1 The Smalltalk SyStEM DICHONAIYcccveieieeteeeeeee et sa e sreerenne s 28
P G A ¥ 10100°= PO PRSPPI 29
A N[1= U 7Y o =P PP 30

3. RESULTS 32

3.1 SMALLTALK OTHELLO uuutttiieeeiiiiiiitteeee e e sesitstaeesesssesisssssesssssasssstssssesssesssstssssssssessssssssesssssssssssssessseins 32
I N R O 1V V1=V TR 32
O copyright Andrew Eidsness, 1997-1999 April 19, 1999

aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page iv

312 The Trangation PrOCESS......cciiiriiiireee ettt st sttt sttt sttt sttt bttt e 33
O O @ |\ [0 I 0 1S N PR 37
4.1 FUTURE WORKcutiitiiiies ittt st et ettt e st e st e sase e s ase e saee e sas e e ean e e sme e e amn e e smbeeame e e smneennneesnneenneeas 37
0 R U 1 T o = SRRSO 37
4.1.2 SMAlltalk BASE ClASSESccueeueeeeieie ittt ee ettt sae e e et seesbe b sbesne e e eneeneetesesne e 38
B, REFERENGCES...... .ottt ettt ettt e s e e e s b e e e st e e e aae e saee e sbae e saaeessaeesneeennnen 39
5.1 RELATED WEB PAGES.....cccutiitiiiitie ittt ettt ettt ettt sae e be e sse e s be e e saeesabe e e saeeesbe e e snneenneeesnneeneeas 39
6. APPENDIX A: TEST PLAN . ..ottt sttt e ettt e st e et e e te e e ba e esa e e staeennneesbaeennnesnees 40
6.1 INTRODUGCTION....ccutiiueesreesreeresneseesseesmeesseesseeseesseaseesseesseeseasesasesseesmeesneeanseareanneanneaneenseesresnsesnnesnnes 40
6.2 OVERVIEW eitiiuiieieeeteesteeste et ese et smeeneeaneeseeas e s se e s e e s e e e e s ae e s Re e sRe e aRe e ne e an e eme e emeeare e r e e rennnennnesnnis 40
0.3 TEST CASE STATUS ...eeiiieitieieeie et sre e st et ss e s s e se e e e e e s aee s e e sReesneeaneeaneeme e eneeaneenre e reenrennnennnas 42
6.4 TEST CASE DESCRIPTIONS.....cciittieeieesseesseesneeseessesseesseessesssesnsessssseesmeesseesssssssnsssnssssesssesssesssesnnssnnes 42
6.4.1 Local Variable ModifiCatiOn/ACCESSING.......ccceiuerrrriererrereseeeeseesteseesesressessesseessessensessessessenns 43
6.4.2 BasicInstance-side BIOCK EVAlULION..........ccooeieiiieieiniecsie ettt 43
6.4.3 Instance Variable ModifiCation/ACCESSINGccureeriirieeriirieesiesie e 43
6.4.4 Class Variable ModifiCation/ACCESSINGc.ciuiieririiieieriieeiesieiet s 44
6.4.5 Basic Class-side BIOCK EVAlUBLIONc.ccoiiiiiiiieirieee et 44
6.4.6 Class-side Messaging With ArQUIMENES.........cccoireiririeine st 45
6.4.7 Evaluating BIOCKS With ArQUIMENEScciiiiiiirieiieriee sttt 45
6.4.8 Evaluating NeSted BIOCKScociiiiieiiieseee ettt 46
6.4.9 EvaluatingaBlock Soredinalocal Variablecccoeveveviiesieieceeece e 46
6.4.10 Pass a BlOCK @S an ArQUIMENTccoceiiieieseceereese e sttt e e e snenee e e 47
6.4.11 CaSCAUEU MESSAGES.......eeiveirieierieeieeeete e st e e st s te s e ee e s e testesrestesaeese e e ensestessestesaesresneennennens 47
6.4.12 INSEANCE-SIAE SUPEY TESE.....ecuieie ettt sttt st s e e e sr e tesresresneenee e 48
6.4.13 Class-SIdE SUPET TESLceeieeieieiecie sttt e et st ettt e e sreste s e e ne e e eaesaesrestesneesaeas 50
6.4.14 Smalltalk Translated new (ie. object construction without Java’'s New)............cccceveuvveeeen. 52
6.4.15 Messaging a Smalltalk Constructed ODJECT..........coiiiiiiiieiii e 52
6.4.16 Chaining MEeSSAQgES SENASuviiiiiiiiiiiiiie et b2.........
O copyright Andrew Eidsness, 1997-1999 April 19, 1999

aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page v

4. List of Figures

FIGURE 1:

FIGURE 2:

FIGURE 3:

FIGURE 4:

FIGURE 5:

FIGURE 6:

(A) THE TRADITIONAL WAY OF RUNNING SMALLTALK ON A NEW PLATFORM,
JUST WRITE A NEW SMALLTALK VM. (B) HOW THISWOULD APPLY TO THE
JAVAVM (NOTE THE REDUNDANCY OF TWO VM’S). (C) THISPROJECT
ELIMINATESA STEPBY COMPILING DIRECTLY TO THEJAVA VMccccovvirininne 3

INHERITANCE HIERARCHY FOR GENERATED CLASSES, SHOWING WHERE IT TIES
INTO THE JAVA HIEARARCHY ..otiiitiie e eiiee e siesssreeesteesteesssteessneessseeesnsesssnsesssenenns 11

DIAGRAM SHOWING HOW METHOD TABLESARE INHERITED. EVEN THOUGH
SUBCLASSDOESN'T IMPLEMENT METHODL(), IT INCLUDESAN ENTRY INITS
TABLE. THISISNOT DRAWN TO SCALE IN TERMSOF CODE LOCATIONS, ETC. IT
ISJUST AN ABSTRACT DIAGRAM USED TO ILLUSTRATE THE CONCEPT. 14

DIAGRAM OF RELATIONSHIP BETWEEN CLASSTYPESIN THE RESULTING
PACKAGE. THE BASE CLASSESENHANCE SOME, BUT NOT ALL OF THE
FUNCTIONALITY OF THE BASIC JAVA VM . ..ot tee st 18

EXAMPLE OF HOW SCOPES CAN BE NESTED, SHOWING BOTH THE SMALLTALK
CODE AND THE CORRESPONDING JAVA STRUCTURE. THE BINDINGSARRAY IS
DECLARED ASTYPE VISUALWORK S.OBJECT, THE CONTAINED STRING IS
ACTUALLY OF TYPE VISUALWORKS.LITERALS.STRING, WHICH INHERITSFROM
VISUALWORK S.OBUIECT. .utiiiiiieiiiesieeesteeesseessteeesssesstesessseessesessaeesssessnssessnsessnses 21

AN EXAMPLE INHERITANCE HIERARCHY WHICH WILL BE USED TO DESCRIBE
METHOD AND VARIABLE INHERITANCE. PARENTCLASSAND SUBCLASS
PROVIDE IMPLEMENTATIONS OF METHOD1(), BUT MIDDLECLASSDOESNOT..30

FIGURE 7: ARCHITECTURE OF THE SAMPLE SMALLTALK APPLICATION...coeeiiviveivereereeernns 33
FIGURE 8: ANILLUSTRATION OF THE TRANSLATED ARCHITECTURE, SHOWING THE
INTERACTIONS BETWEEN THE TWO CLASSES FORMING THE TRANSCRIPT
WVINDOW . ettt e e e e et ettt e e e e e e e e et et eeesesaaseaeeeseeseeaaaassaeeesesesssasasesseesesssesasnsenneeeeserann 34
FIGURE 9: VIEWSOF BOTH THE ORIGINAL SMALLTALK TRANSCRIPT WINDOW, AND THE
APPLICATION ASAN APPLET WITHIN A WEB BROWSER.cvvvtiiieeeieiiiinneeereesssnnns 36
FIGURE A-1: INHERITANCE HIERARCHY FOR THE TEST OBJECTS....ccceiterteieeeieisireereeresssnnns 41
O copyright Andrew Eidsness, 1997-1999 April 19, 1999

aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page vi

5. List of Tables

TABLE 1: COMPARISON OF SOME OF THE SIMILARITIESAND DIFFERENCES BETWEEN
SMALLTALK AND JAVA LANGUAGE FEATURES. ..ocivcviieieieie s eteee s esree e s sveee s 6
TABLE 2 CORRESPONDANCE BETWEEN SMALLTALK BASE TYPESAND THE JAVA
CLASSESTHAT ARE USED IN THE GENERATED SYSTEM ...vviiiiiieiee et 8
TABLE 3: M APPINGS FOR TRANSLATING SMALLTALK OPERATORSTO JAVA SELECTOR
STRINGS. ottt ieeettteete e et e tee et e e eteeesesa et e eretesssasasbeeeeeeesssasa s s seetesssesasrraaeesesssesaaresreeees 10
TABLE 4: COMPARISON OF SMALLTALK AND JAVA LANGUAGE FEATURESIN TERMSOF
THE CLASS/STATIC SIDE. wueiiiutieitieiettiesteeeetteestessstee s saessstesssbaessbesssbesssstessanenssnes 27
TABLE A-1: TEST CASE TITLESWITH CURRENT STATUS. ¢.eettiiiiiiiieeiiiriesesieressssreeessssveeesssanns 42
O copyright Andrew Eidsness, 1997-1999 April 19, 1999

aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 1

1. Introduction

Since its recent introduction, Java has gained a huge following, and it is beginning to appear as
though the Smalltalk community will embrace this new platform®. Witness the recent
abandonment of Smalltalk by ObjectShare in its move to Java and a similar shift of focus at

Carleton University.

Smalltalk’s introduction twenty years ago prompted the object oriented revolution, and the
language has been successfully used for numerous projects, this success has lead to awide range
of research intent on further improvements to the environment. Despite this success, and
athough the language provides an excellent devel opment environment, Smalltalk does not seem
to have lived up to its promise of auniversal execution environment. Once cited reason has been
the need for the high cost of the Smalltalk VM, a policy for which vendors have been widely

criticized.

Similar to Smalltalk, the term Java has two meanings, it refers to both a machine-independent
byte code specification, and a high level programming language which can be compiled to this
language. It isthe byte code specification (hereafter referred to as the Java VM) that has made
Java so popular. The Javalanguage itself is still in itsinfancy, and is constantly undergoing major
revisons. Thisstate of constant flux is blamed for the failure of alarge number of projects, most
notably Corel’s Java Office Suite project. The conclusion seems to be that the Java language is

still too immature for serious devel opment.

! For an example see the Usenet thread at [USENET] which taken is from a recent discussion on comp.lang.smalltalk.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 2

Below the language level, the Java VM is essentialy unchanged since theinitial version. In
addition, all JavaVVM’s are backwards compatible to the original version of the byte code,
meaning that code targeted for the initial version of the VM will run on any subsequent VM.
More importantly, contrary to the approach of the Smalltalk vendors, Sun fredly distributes Java

VM’sfor awide variety of environments.

Hence we have identified the following points:
e Smalltalk provides an excellent devel opment environment. Code reuse and an
excellent debugging environment allow rapid application development and easy
mai ntenance of existing applications.
e Code targeted to the Java VM can be executed on adiverse set of hardware platforms
(including embedded environments such as USRobotic's PalmPilot). Further, the
popularity of the JavaVM makes it extremely likely that new platforms will provide

their own implementations of the Java byte code interpreter.

These points seem to suggest that it would be advantageous to devel op programs using some
Smalltalk environment (ObjectShare's VisualWorks has been targeted for this project) and then
deploy the application on the Java VM. By targeting version 1.0.2 of the VM we ensure that the
code is not subject to future changes. Such atool would, at the very least, provide an easy way to
demo Smalltalk applications (since support for at least version 1.0.2 of the Java VM isincluded in

al modern web browsers).

1.1 Supporting Smalltalk on a New Platform

In general, platform support is added to Smalltalk by ensuring that the final code can run on the

new platform; e.g., Intel chips require one machine language, Motorolla chips another, and the

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 3

JavaVM yet another. Figure 1a shows how Smalltalk would function on top of anew hardware
platform. The Smalltalk byte code is unchanged, instead a new interpreter is created. Following
this approach for the Java trandation would lead to an implementation of the Smalltalk VM that
runs on top of the Java VM, as shown in Figure 1b. Although feasible, this project proposes to
reduce the overhead incurred by running two virtual machines; our goal instead isto compile the

Smalltalk objects directly to Java byte code to create a system asin Figure 1c.

Smalltalk Application Smalltalk Application

Smalltalk Application

!

t

!

t

!

Smalltalk VM Smalltalk VM
Java VM
Hardware Platform
Java VM Hardware Platform

!

Hardware Platform

(a) (b) (c)

FIGURE 1: (a) Thetraditional way of running Smalltalk on a new platform, just write a new Smalltalk VM.
(b) How thiswould apply to the Java VM (NOTE the redundancy of two VM’s).
(c) Thisproject eliminates a step by compiling directly to the Java VM.

The second point to consider when supporting a new platform is the creation of user interface
components for that platform. The development of Ul components lies outside the scope of this
project, however since the VisuaWorks system has awell defined API for its user interface
components, it is arelatively straightforward task to create Java classes which wrap the AWT?
components with the appropriate interfaces. A rudimentary interfaceis provided with a Java
classthat is a scaled-down version of Smalltalk’s Transcript window. This Transcript allows text

output, and alimited form of text input. In addition, the Transcript class has been wrapped in a

2 The abstract windowing toolkit is the package that supports graphical interfaces in Java programs.

O copyright Andrew Eidsness, 1997-1999
aeidsness@acm.org

April 19, 1999

Generating Java Class Files from Smalltalk Objects Page 4

Java Applet, so that the trandlated application can be embedded in any web page. Section 3

describes this processin more detail.

1.2 Document Overview

Section 2 begins by describing the trivial details involved in tranglating a Smalltalk application.
The bulk of the section describes the more complicated parts of such atrandation; e.g., how
Smalltalk blocks are handled. Section 3 gives an idea of the abilities of the tool by describing the
process of converting a moderately complex application to its Java equivalent. Appendix A

describes the test plan which has been successfully handled by the toal.

Additionally, aweb page has been created as aform of support for this paper. It includeslinksto
relevant web sites as well as aworking version of the sample application. This pageis currently

at [HONSUP].

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 5

2. Methodology

2.1 Introduction

Our goal isto develop atool that is able to translate a working Smalltalk system to its equival ent
Java byte code representation. We want the trandated system to directly use the functionality of
the JavaVM as much as possible. However, due to language differences, it may be necessary to
implement a partial Smalltalk VM in Java code. Our secondary goal is use Java byte codes as
much as possible, making additions only when absolutely necessary. Additionaly, all extensions

will beimplemented in Java, so they can run on top of any JavaVM 2

2.2 Miscdlaneous Details

This section defines the key language features, and explains the solution for al trivial problems.
The following sub-sections describe the larger issues in more detail. Table 1 outlines some of the

similarities and differences between the Smalltalk and Java language features.

Smalltalk Java

Object oriented object oriented

Memory managed by garbage collector memory managed by garbage collector

Single inheritance of code and data single inheritance of code and data

Dynamic binding pseudo-dynamic binding

non-typed typed

Instances access own methods via self instances access own methods via this

Inheritance available on both instance and inheritance available on instance side only

classsides

Method lookup based on instance method lookup based on declared type as
well asinstance

3 As opposed to some projects which propose amodified Java VM.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 6

all methods globally visible some methods private to class or subclasses
all instance variablesvisible only to classand | some instance variables globally visible
subclass
Equivalent of function pointers (#perform:) no function pointers
parts of method selector mixed with method methods defined with complete method
arguments selector followed by list of arguments
Symbol aslitera N/A

TABLE 1: Comparison of some of the similarities and differences between Smalltalk and Java language

features.*

2.2.1 Garbage Collection

Smalltalk and Java are virtually identical in the way that memory is managed. Memory is
transparently allocated when a new instance is created, and transparently returned when an

instance is no longer referenced. For this reason memory issues can be ignored.

It could be argued that this is one of the greatest similarities between Smalltalk and Java.
Consider for example, the difficulties that would arise from attempting such atranslation from
C++ source code. Objects created and rel eased with the new and del ete keywords would be

straightforward, but there is not obvious solution for dealing with other pointer manipulations.

2.2.2 Privatevs. Public Members

In Java, methods can be declared as private (visible only within the class), protected (visible only
within the class and its subclasses), or public (visible to everyone). In Smalltalk all methods are
implicitly public. Therefore, all methods generated from a Smalltalk object will be declared

public in the resulting class file.

4See[CHIMU] and [STIC] for a more thorough analysis.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 7

Similar to methods, Java allows all member variables to be declared private, protected, or public.
In Smalltalk, all member variables are visible only to the class and its subclasses. Thus member

variablesin all generated classes will be declared protected.

2.2.3 Dynamic Binding, Polymor phism, and Types

In both Smalltalk and Java, method lookup is performed symbolically, at run-time. In languages
that are strictly compiled (e.g. C++) methods are invoked via memory offsets, which are
determined at compile-time. Dynamic binding, although slower has the advantage of permitting
some objects to be replaced without recompiling the entire system. It would appear that thereis
no issue. However in astrict sense, Javais not entirely dynamically bound. Section 2.4 explains

the somewhat subtle differences, as well as the chosen solution.

2.2.4 Inheritance

In Smalltalk, the methods of a superclass (on both the instance and the class sides) can be invoked
using the specid object super. Java uses the super keyword to invoke a superclass instance
methods, but there is no way to directly reference a superclass’ static methods, short of specifying
the superclassitself; i.e., Java has no concept of inheritance on the static side. Asdescribed in

section 2.6, the solution is to avoid using the Java static side.

Smalltalk implicitly provides access to a superclass member variables; i.e., a superclass’ instance
and class variables can be accessed via a direct reference, no special keywords are required. The
Java byte code requires the class where a member variable is defined to be supplied when a
variableisreferenced. Smalltalk ensures that subclasses do not reuse their parent’'s member
variable names so given any instance variable name, we can find the defining class by examining

the inheritance hierarchy.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 8

225 BaseTypes

Smalltalk has several base types or literals, which are the ultimate contents of any memory
location. Each of these typesis represented by a specialy written Java class. Table 2 lists these
base classes and their corresponding Java literal class. Every instance of a basetypeis

represented by anew instance of its corresponding litera class.

Smalltalk Base Type JavalLiteral Class

String visualworks.literals.String

Symbol visualworks.literals.Symbol

Character visualworks.literals.Character

Integer visualworks.literals.Integer

Array visualworks.literals.Array

Float visualworks.literals.Float

Double visualworks.literals.Double

FixedPoint visualworks.literal s.FixedPoint

Boolean visualworks.literals.Boolean (abstract)

True visualworks.literals.True

False visualworks.literals.False

Nil visualworks.literals.UndefinedObject
TABLE 2: Cc;;respondance between Smalltalk base types and the Java classes that are used in the gener ated

system.

In most cases, the Java literal class just wraps one of the primitive Javatype (e.g., int, char, etc).
Literals are represented with Java classes so that the Smalltalk interface can be made available to
the generated classes (i.e., visualworks.literals.String implements the interface of Smalltalk’s
String class). These classes are compiled from Java source, the tool simply copies the classfiles

to the target directory.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 9

2.2.6 The Smalltalk #perform: Method

Smalltalk has the equivalent of function pointers with it's #perform: method. This method allows
a selector to be built at runtime. We can implement this method in our generated classes as

shown in the following Java pseudo-code:

public Object perform(visualwrks.literals.Synbol sym {
i f(sel == #nethodl)
return this.methodl();
el se if(sel == #net hod2)
return this.method2();

2.2.7 Method Selector Mapping

A multi-part Smalltalk selector, sagelectorArgl: arg2:, must be mapped to a single string for
Java. Additionally, Java does not allow colons in its selectors, so these must be replaced with
underscores so we gaglectorArgl_arg2_(...)The arguments retain their order when put into

the argument list.

Smalltalk allows some operators (e.g. @, -, and +) to be used as method selectors, while Java

does not. In order to trandate these operators to Java, they are replaced with astring, as shown in

Table 3.
el e el e
_plus _lessThan
- _hyphen > _QreaterThan
* _star <= _lessThanEqual
% _percent >= _greaterThanEqual
/ _foreSlash = _equal
I _doubleForeSlash == _doubleEqual
\ _doubleBackSlash ~= _tildeEqual
O copyright Andrew Eidsness, 1997-1999 April 19, 1999

aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects

Page 10

@ at &

_ampersand

** _doubleStart |

_bipe

TABLE 3: Mappingsfor transating Smalltalk operatorsto Java selector strings.

2.2.8 Smalltalk Primitives

Smalltalk methods are able to access primitives. These are essentially Smalltalk bytecodes that

arevisible at the application level. It isastraightforward task to catalogue the semantic meaning

of each primitive, generate a snippet of Java bytecode to perform the same task, and then replace

the primitive reference with the Java byte code when the Java classis generated. Dueto the large

number of primitives, thiswork is outside the scope of this project.

O copyright Andrew Eidsness, 1997-1999
aeidsness@acm.org

April 19, 1999

Generating Java Class Files from Smalltalk Objects Page 11

2.3 JavaClassFiles

This section introduces the class file concept and gives a brief description of how Smalltalk
objects are trandated. The languages are essentially compatible, in that both are based on objects

which are composed of member variables and methods.

2.3.1 Namespaces

One areawhere Smalltalk and Java differ is namespaces. All Smalltalk classes are defined in a
single namespace. Java uses packages to alow multiple namespaces. By putting all generated
classes into the same package (we chose the name visualworks) we guarantee that the proper

classes can be found and that there will be no naming conflicts with existing Java classes.

2.3.2 Object and Inheritance

In the generated classfiles, the Smalltalk inheritance hierarchy tiesinto the Java one directly
below java.lang.Object. Asillustrated in Figure 2, when visualworks.Object is generated, it
inherits from java.lang.Object and the rest of the generated classes are derived from

visualworks.Object in the same way asthe original Smalltalk classes.

I java.lang.Object I

LI visualworks.Object I

L all other generated classes

FIGURE 2: Inheritance hierarchy for generated classes, showing whereit tiesinto the Java hierarchy.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 12

2.3.3 ClassFiles

Java classes are represented with class files, with one class file for every Java class.”

Thus the result of running the tool on a Smalltalk system is a directory containing a collection of
classfiles. Theintentisfor the generated classes to use the Java byte codes as much as possible.
However, as described in the following sections this is not always possible. In some instances, it
is necessary to enhance the Java VM using afew custom Java classes. These custom classes are
included in the sub-packages of the base visualworks package but are pre-compiled, the tool

simply copies them to the target directory.

2.3.4 Graphical Interfaces

The VisualWorks system creates graphica interfaces (GUI'’s) using component specifications and
builders’. By creating component buildersin Java, it would be possible to read the specs (once
they have been trand ated from the Smalltalk source) and build the appropriate interface using

Java components.”

GUI issues lie outside the scope of this project, so the Java builder has not been created, but itis
interesting to briefly examinethisissue. The GUIBuilders read the specifications and create the
proper components. If Javafileswere created for each component (this would likely have to be
done manually, since they must use the proper AWT classes) then the builders themsel ves could
be trandated from the Smalltalk source using the proposed tool. Thisis explored in more detail

in section 4.1.1.

® Whileit is possible to define multiple classes in the same class file, only one of them can be declared public. All
Smalltalk classes are public.

® Thisis the Builder pattern of | GAMMA 94] p. 97.

" Applied Reasoning [APPLIED] uses avariation of this technique to create a system where the Smalltalk code resides
on the server and a Javainterface is built on the client. The client generates Java events which are sent (via CORBA)

to the server where all processing is performed.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 13

24 Types

Javaisastrictly typed language while Smalltalk is entirely untyped. This means that when a
variable or method argument (i.e., a parameter) is trandated from Smalltak to Java, some type
must be inferred. Some projects® have had some success doing thisin arigorous fashion, but we
choose the simple solution of declaring everything as visualworks.Object, and |etting the
polymorphic abilities of the Java VM sort it out. Theideaisthat given an instance and a selector,

the VM will find the correct code (from the instance’s inheritance hierarchy).

If Javawere entirely dynamically bound, this solution would be ideal, however in a strict sense
thisis not the case. When a Java method is invoked, both the classname and the method name
must be supplied. The method table of the given classis examined (at runtime) to find the offset
of the method (in terms of itsindex in the method table). The corresponding instance then
invokes the code pointed to by theindex. The method table is a collection of code pointers,
where each entry corresponds to some symbolic method name. The method table is built by the
VM when aclassisloaded. Figure 3 illustrates this concept showing how it relates to

inheritance.

8 For example, [ORISA] performs an analysis of the code to hypothesize about types. They report being able to
automatically make a type determination in most cases. The small remainder which cannot be decided, are brought to
the user’s attention to be manually defined.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 14

Class
Hierarchy

ParentClass

I— SubClass

ParentClass Code SubClass Code
Method Table Method Table

public void method1() {
visuaworks Object varl;

method1() [3

a

v

publicvoid method2({ method1()

visualworks Object varl;

method?2() [

v

method?2()

®
\ 4

publ

ic void method2() {
visuaworksObject var;

method3() [}

\ 4

public void method3() {
visualworksObject var3;

FIGURE 3: Diagram showing how method tablesareinherited. Even though SubClass doesn’t implement
methodl(), it includes an entry in itstable. Thisisnot drawn to scalein terms of code locations,
etc. it isjust an abstract diagram used toillustrate the concept.

The following Java code shows how the method table in Figure 3 would be used.

Parent C ass i nst = new Subd ass();

i nst. met hod1(); /1 line A - to be referenced bel ow
i nst. net hod2(); /1 line B- to be referenced bel ow
i nst. met hod3(); /1 line C- this line will fail

From the compiler's viewpoint, inst is of type ParentClass, so it will use that asthe classfor al

method invocations. Line A for example will compile to the following Java byte code:

i nvokevi rtual visual works/Parentd ass/ nmethodl()V

Notice that ParentClasses method table is used to determine the method index. Line A will find
that the required method isthe first in the table, so ingt will invoke the code pointed to by the first
entry of its method table; i.e., the first entry in the SubClass method table, which in this caseis
the same as that pointed to by ParentClass. In line B the method table of ParentClass will be
consulted to determine that the required method is second in the table. When the code pointer is
retrieved from the method table of ingt, it will point to the new code since SubClass has

overridden the method. Thusit should be clear that even though method3() is implemented by

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 15

SubClass, it cannot be found, since the bytecode refers to the table for ParentClass. The normal

Java solution is to use typecasting as in:

((Subd ass)inst).nethod3();

Thisis not asufficient solution in our case, since it reintroduces the original problem of deciding

on atype (in this case for the typecast).

The chosen solution is to guarantee that all selectors can be found in ParentClasses method table.
We can achieve this by generating visualworks.Object such that it implements every selector that
is sent in the generated code. So when we trand ate a collection of Smalltalk objects, we generate
acollection of al method selectors. Thefinal step of the trandation processisto build
visualworks.Object such that it contains a method body for every selector. A classinheritsits
parent’s method table so all method tables will have an entry for every selector. In the above
example, ParentClass would have inherited an index for method3() from Object, so the sample
code would evaluate correctly since its own entry for that index isthe correct one. Thisalso
implies that the code in the methods generated in Object are never used, the methods are just
placeholders in the method tables. However, for safety reasons we have generated code that

throws an exception (as discussed in the next section).

2.4.1 DoesNotUnderstand Exception

The default Smalltalk behaviour when a method body is not found is to raise a DoesNotUnder -
stand signal. By adding code to throw a similar Java exception into the method bodies, we can
emulate this behaviour in our generated code. The methods in Object will only be evaluated if
the subclass does nat implement the method, in other words, when the selector is not understood

by the instance.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 16

242 Summary

This solution is obviously less than optimal since it builds an Object class that istailored to a
specific set of classfiles. More importantly, it wastes alot of memory, since every method table
inthe VM will contain an entry for every selector in the system. Despite of these drawbacks, this

solution has been chose for its simplicity and the way it is able to emulate Smalltalk’s behaviour.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 17

2.5 Blocks

25.1 Introduction

A smalltak block is an instance of an object (BlockClosurein VisualWorks) containing code
which can be evaluated on demand, essentially afirst class function. The Java VM does not
support first class functions, so this behaviour must be emulated. This means that structures must
be defined which permit the following behaviour:

» evauate a section of code on demand

e passasection of code between methods

« modify variables defined outside of a block (but within the scope that defines the

block)

e cause a block’s defining context to terminate

Section 2.5.2 contains a high-level description of the solution. Section 2.5.3 describes the
evaluation of blocks. Section 2.5.4 discusses variable modification. Section 2.5.5 presents the
details of how the defining context can be terminated. Section 2.5.6 concludes with a summary

of the chosen solution.

2.5.2 Overview of Solution

This section proposes that the addition of a few Java classes is enough to provide all of the

functionality of Smalltalk blocks.

As illustrated in figure 4, these base classes are essentially primitives that will be used by the
generated classes. These base classes are used by the generated code, they are never directly

referenced by the user (in this case the user is the Smalltalk programmer).

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 18

I Generated Classes I

!

I Base Classes I

!

I Java VM I

FIGURE 4: Diagram of relationship between classtypesin theresulting package. The base classes enhance
some, but not all of the functionality of the basic Java VM.

For performance, the size of the base class set should be kept as small as possible. This
restriction differentiates this project from others that attempt to implement a full Smalltalk VM on

top of the JavaVVM,® and should yield much better performance.

2.5.3 Block Evaluation

In Java, al code evaluation istriggered viaamessage send. Thuswhen aclassfileis generated,
we also generate a special blocks method. The body of this method contains the bodies of all
blocks defined within the class. Each block is assigned a unique integer label. A switch
statement is used to separate the block bodies within the specia blocks method. During the
generation phase, the label of each block istracked, so that block evaluation becomes a simple

matter of calling the special blocks method with the appropriate label as an argument.

As an example, consider translating the following Smalltalk code to equivalent Java code.’® This

example obvioudy lacks details, but instead illustrates the concept.

aMet hod

® See[STX] for example.
10 The generator does not actually create source Java code; this example merely illustrates the underlying structure of
the byte code that is generated.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 19

[true] val ue.
[false] value

voi d aMet hod() {
sel f _bl ocks(0);
self _Dblocks(1);

}
void _blocks(int i) {
switch(i) {
CASE 0: return true; br eak
CASE 1: return false; break
}
}

Thefirst step in automating this processisto create an object to wrap the message sends to the
special blocks method. We define a class ContextBlock.java as follows (some detail s have been

omitted for clarity).

public class ContextBl ock extends visual works. Qbj ect {
i nt bl ockl ndex;
vi sual wor ks. Obj ect i nstance;

public visual works. Qbj ect value() {
return instance. bl ocks(bl ockl ndex);
}

}

ContextBlock.java also defines methods for the Smalltalk selectors #value:, #value:value:,
#valuevalue:value:, and #valueWithArguments:. Passing arguments to a block is discussed in

the next sub-section.

To complete this example, the Java version of #aM ethod now becomes:

voi d aMet hod() {
(new Cont ext Bl ock(this, 0)).value();
(new ContextBlock(this, 1)).value();
}

2.5.3.1 Block Arguments

Another detail isthe ability to pass arguments to the blocks. We add a parameter to the special

blocks method, which isjust an array of objectsthat will be accessed by only those block bodies

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 20

that expect arguments (thisis ensured when the Smalltalk source code is written). In the body of

#value, thiswill be an empty array, in #value: it will be an array with one element, etc.

25.3.2 Summary

Thus when the generator encounters a block, three things happen:
» theblock isassigned a unique integer label
« the body of the block is added to the class’ special blocks method
« Java bytecode is generated to create a new instance of ContextBlock using the

block’s integer label

Since instances of ContextBlock.java are ordinary Java objects, they can be passed between

methods and classes in the same way as the Smalltalk counterpart.

25.4 Variable Accessing and Modification

The scope of a block is nested within that of the context where the block is defined. This means
that a block is able to access variables that have been declared outside of the block but within the
defining method. Any changes to variables performed within the block should be visible outside
the block when the block terminates. For example, the following code should return the string
“inside the block’, abehaviour that is consistent with the simple scoping rules of Smalltalk and

Java (even C supports this form of scoping).

| local |

| ocal := 'before’.

[local :="inside the block’] value.
Al ocal

Unfortunately, providing this behaviour in the context of blocksis not trivial. Since, as described
in section 2.5.3, the body of ablock isevaluated in a method other than the defining one, the

locaswill not be visible in the specia blocks method. The solution isto bypass the normal Java

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 21

scoping mechanism and pass our own table of variable bindings. By using thistable for al

variables (even those local to the block), we can easily handle blocks defined within other blocks.

The class Scope.java has been defined to implement this binding table. Instances of Scope.java
exist asalinked list, where each cell contains the variables defined by a single context, as shown
infigure5. Thetableis stored asan array, so variable references are nothing more than offsets

intothisarray. Theindices of achild start from the largest value of its parent.

BINDINGS: { null, 'before’ }

| It

| local temp | PARENT: null

temp :="before’. A

[| nested | local :="inside the block’] value.

Alocal BINDINGS: { null }
PARENT: @

FIGURE 5: Example of how scopes can be nested, showing both the Smalltalk code and the corresponding
Java structure. Thebindingsarray isdeclared astype visualworks.Object, the contained string
isactually of type visualworks.literals.String, which inherits from visualwor ks.Obj ect.

The advantage of this approach is that it allows a context’s variables to go out of scope without
overhead. A block can modify its variables, as well as its parent’s variables. The block’s
instance of Scope.java is destroyed when the block terminates, but the parent still has access to its

own scope.

So in addition to a code pointer, a ContextBlock stores an instance of Scope.java. The value of
scope is set when the block is defined, so that wherever the block is evaluated, the correct scope
will be accessible. Also, since the block stores a reference to the scope (vs. a copy), all variable

modifications will be visible when the block is evaluated.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 22

Thusthe final definition for the special blocks method is as follows. Notice that the third
argument of the special blocks method is an array of block arguments (as described in section

25.3.1).

/1 This method is received by the owner of the bl ock
public visual works. Qbj ect _bl ocks(

int, /1 bl ock index
Scope, /'l context’s scope
vi sual wor ks. Obj ect []); /1 arguments to bl ock

Also ContextBlock.java must be refined to:

public class ContextBl ock extends visual works. Qbj ect {
i nt bl ockl ndex;
Scope scope;
vi sual wor ks. Qbj ect i nstance;

I/ . . . sone details omtted

/1 The #val ue nethod has no argunents so an enpty array is used
as a
/1 place hol der.
public visual works. Qbj ect value() {
]:

vi sual wor ks. Qbj ect bl ockAr gs| new vi sual wor ks. Obj ect [0] ;

return instance. bl ocks(bl ockl ndex, scope, bl ockArgs);

}

/'l The #val ue: method has one argunent, so a single el enent
array is
/'] used.
public visual works. Cbj ect val ue_(vi sual wor ks. Obj ect argl) {
vi sual wor ks. Obj ect bl ockArgs[] = new vi sual works. Qbject[1];
bl ockArgs[0] = argl

return instance. bl ocks(bl ockl ndex, scope, bl ockArgs);

}

// simlar nmethods for all other value selectors

}
2.5.4.1 Critique of Scope.java

Using this technique, all methods generated from a smalltalk object bypass the normal Java
scoping mechanism, in favour of this custom scoping technique. Thisintroduces a performance
penalty, since all variables are now accessed at a higher level. However, performanceis
acceptableif the project goal isto be ableto create demos of working Smalltalk systems. A demo

(whichislikely being accessed from some web page) is allowed to perform sub-optimally.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 23

If the performance penalty can be overlooked, then thisis avery powerful technigue that can be
used in avariety of situations. The key is that we are not generating source code so the emphasis
can be on functionality instead of elegance (the execution of the compiled classfilesis not visible

to the user).

2.5.5 Returning from Blocks

2.55.1 Introduction

A block without a carat () implicitly returns the result of the last computed value (i.e., the final
line). A block with a carat explicitly forces the current value to be returned from the method that
defined the block (i.e., a carat causes the block, as well as the method that defined the block, to

terminate immediately).

Thisimpliesthat ablock can only use an explicit return if its defining method is still on the
execution stack. For example, the following Smalltalk code will cause a ContextCannotReturn

signal to beraised.

set Bl ock
instanceVar := ["~ block stored in an instance variable’]

useBl ock
sel f set Bl ock.
i nst anceVar val ue

When the block is evaluated (in #useBlock), it will attempt an explicit return from the context of
#setBlock. Since #setBlock has already completed, its context has been destroyed -- an error

signal israised.™

™ In this case, an implicit return would execute without error.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 24

2552 Implementation of Implicit Returns

Implicit returns are essentially the default case. A normal Java method return from the special
blocks method will return execution to the context that evaluated the block. Notice that this holds

even if ablock is being evaluated from within another block.

2.5.5.3 Implementation of Explicit Returns

Explicit returns require the ability to send a message up the evaluation stack to the context of the
specific method that defined the block, we do this with a Java exception signal. When a context
receives this signal, it should resume execution (terminating all contexts beneath it) and
immediately return the contents of the signal. There may be an arbitrary number of contexts
between the definition and the evaluation of a block, so the signal must be more than asimple

return.

The Java exception mechanism isideally suited for this. Theintent of exceptionsisto mark a
section of code and then deal with any errors that occur before the end of the section. The

following Java code illustrates this process.

try { this.wapperMthod(); }
catch(Exception e) { return "an error occurred"; }

voi d w apper Met hod() throws Exception {
t hi s. i nner Met hod();
}

voi d i nner Met hod() throws Exception {
i f (badCondi tion)
t hr ow new Exception();

When the exception is thrown, it will send asignal directly to the catch block, bypassing the

wrapperMethod. Exceptions that are not caught in code are eventually trapped by the Java VM.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 25

Java contains definitions for about fifty types of exceptions.> We define anew class to represent
the explicit return signal. By subclassing from RuntimeException, we obviate the need for the

throws clause in the method definitions.

The solution then isto put atry block around the body of every method that defines ablock. The
corresponding catch block will extract and immediately return the value stored in the exception

object.

If the context of the method that defined the block is no longer active, then the exception will not
be caught in code (since the try block will already have completed normally) but rather by the
JavaVM. Thus by calling the exception ContextCannotReturn, we mimic the behaviour of

Smalltalk.

A final detail to examine is dealing with nested blocks. The following Smalltalk code shows an

example of this:

nest edBl ocks
[[~ 'inside inner block’] value.
"inside outer block’] value
N T after bl ocks’

The exception should only be caught by the defining method, never by the special blocks method
(since that method just represents the body of some other block). Therefore atry is placed around

the body of all methods that define blocks, except for in the special blocks method.

2 See [FLAN96 | pp. 349-364.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 26

256 Summary

We have atechnique for converting arbitrary Smalltalk blocks to fully functional Java
counterparts. The solution requires the following three base classes:

e ContextBlock.java

e Scopejava

» ContextCannotReturn.java (to signal explicit returns)

The solution also requires a special blocks method to be created for every classfilethat is

generated. This allows a block to be evaluated with an ordinary Java method.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 27

2.6 Smalltalk Classvs. Java Static

Although similar, the behaviour of the static side of aJavaclassfileis not precisely the same as

the class side of a Smalltalk object. Table 4 highlights the differences and similarities.

Smalltalk Java

class variables visible to all instances static variables visible to all instances
class can be passed as an object class cannot be passed as an object

class side has access to self static side does not have access to this
class side inherits from superclass static side does not inherit from superclass

TABLE 4: Comparison of Smalltalk and Java language featuresin terms of the class/static side.

Asin section 2.5.4, where we bypass the Java scoping mechanism, we reconcile this
Smalltalk/Java discrepancy by bypassing the Java static side. Every time aclassfileis generated,
we also generate a special metaclass. The class side of every object is represented by asingle
instance of this metaclass. That is, a class method in ClassA becomes an instance method in

MetaClassA .class.

The inheritance hierarchy of the metaclasses is the same as that of the classes. Those familiar
with Smalltalk will recognize this as essentially the same way that Smalltalk handles the issue.
The difference isthat Smalltalk metaclasses are al instances of the same class, while we generate
anew classfilefor each. Smalltalk classes are represented at a much higher level, while we want

to use the basic Java resources as much as possible.

To ensure that there is exactly one instance of each metaclass, and that the instance is globally
visible, we maintain asingle, global, hashtable. Again, thisisthe same way that Smalltalk deals

with theissue, and for consistency, thistableis called Smalltalk. Each entry in thetableis keyed

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 28

by a string containing the name of the class. For example, an instance of MetaClassA is accessed

with the key "ClassA".

2.6.1 The Smalltalk System Dictionary™

The two requirements of the system dictionary are that it be globally accessible and that there be
only oneinstance. Both of these aims are met by creating a class called Smalltalk, with a hash

table on its static side.

Thefirst time that a Java classisreferenced, the VM loadsit from its class file (in the case of
Java, this may involve reading over the internet). From this point, the VM aways refersto its
own local version of the class (permitting static variables, etc). Thereisan optional section of
code that is evaluated one time (right after the class has been loaded). This code can be thought
of asaclass constructor instead of the more common instance constructor. For all generated
classes, this method contains code to create an instance of the metaclass and put that instance into

the system dictionary, with the class name as a key.

Since each class loads only its own metaclass, the section can be hardcoded and can therefore run
very efficiently, making this the preferred technique. However, it requires the class to be
accessed before the metaclass; i.e., a class must be referenced in order to make its metacl ass
accessible. In some cases, the metaclass may be accessed before the class, we deal with this by
modifying the system dictionary accessor. If anon-existent key is accessed, the value of that key
(i.e. the class name) is used to create and store the proper metaclass. The following code (taken

from Smalltalk.java) illustrates this process.

public static visual works. Object at_(visual works. Obj ect key) {

13 Hereafter, the Smalltalk system dictionary will be referred to asjust the system dictionary to avoid confusion with
the Smalltalk language.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 29

i f(!systenDictionary. contains(key))
systenDi cti onary. add(
key,
O ass. forName("Meta" + key.toString()).new nstance());
return systenDictionary. at (key);

}

Thereal code adds some error handling to ensure that the metaclass definition is found, that there

are no errors building the instance, etc., but thisillustrates the basic idea.

To be clear, the hope is that the custom code will be used as much as possible, but if the
metaclass is accessed before the class has been loaded, the general code in the accessor ensures

that the metaclassis retrieved.

Smalltalk also uses the system dictionary for storing global variables (all Smalltalk classes arein
fact stored in aglobal variable). Smalltalk.java can be used in the same way. However undefined
globals (because of the above) are interpreted as classes. In general thisis not a problem, since

the source code is from aworking Smalltalk application.

2.6.2 Summary

Every Smalltalk class, say ClassA, which is compiled to Java byte code creates two classfiles.
One, ClassA.class, implements the instance side of the Smalltalk object. The other,
MetaClassA .class, implements the class side of the Smalltalk object. A new base class,
Smalltalk.javaisintroduced to manage the instances of the metaclasses. Smalltalk.javais also

used to store dl global variable bindings.

Since a Smalltalk classis represented by an instance of a Java class, it can be passed around in the
same way as any other Java object. This behaviour is demanded by the Smalltalk code, and this

solution is key to being able to trand ate Smalltalk objectsto Java classfiles.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 30

2.7 Inheritance

Smalltalk doesn't distinguish between the class and the instance side in terms of inheritance.
Both sides are able to directly access their parent’s member variables, and both sides can invoke
an inherited method using the special object super. Java has a similar procedure for invoking
inherited methods on the instance side.* Member variables can be directly accessed and super
can be used to invoke the inherited methods. However, at the bytecode level, the inherited
classname must be supplied. Figure 6 shows an example inheritance hierarchy. A method is

defined then overridden in aderived class.

I ParentClass I method1()

Ll MiddleClass |
LI SubClass I method1()

FIGURE 6: An exampleinheritance hierarchy which will be used to describe method and variable
inheritance. ParentClass and SubClass provide implementations of method1(), but MiddleClass
does not.

A Smalltalk method in SubClass could invoke ParentClass>>method1() using the special object

super, asin:

super net hodl.

However the Java byte code requires that the proper classname be provided. Thus the bytecode:

i nvokespeci al M ddl ed ass. net hod1()

would not work. The following should be used instead:

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 31

i nvokespeci al Parentd ass. net hod1()

Since we trand ate classes not individually, but in groups thisis not really a problem. Whenever a
reference to the special object super is encountered in the Smalltalk code, we just ook up the
inheritance hierarchy to find the class that implements the selector. If the selector is not found,
then Object is used as the implementor. In the final system, Object will implement all selectors

using the 'DoesNotUnderstand’ method body as described in section 2.4.1.

Member variables require asimilar scheme, since at the bytecode level, the class must also be
specified. The differenceisthat Smalltalk doesn't use the super object when retrieving an
inherited member variable. The solution isto walk the inheritance hierarchy every time we
generate code for member variable access and modification. Again, since the source is aworking
Smalltalk application, it has compiled correctly and therefore all member variables must be

properly defined at an appropriate level in the tree.

14 The static side is not applicable since, as described in section 2.6, it is not used in the generated class files.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 32

3. Reaults

The techniques outlined in section 2 have been used to implement atool capable of generating
Java class files from Smalltalk objects. Thistool performs the code generation but not the
parsing. An existing parser was reused, so thetool starts not from the Smalltalk syntax, but from
aparsetree. Thetool has successfully handled the trivia test cases described in Appendix A.

The intent of this section isto describe the translation of a more complex application.

3.1 Smalltalk Othello

3.1.1 Overview

The sample application is atwo-player game of Othello™, where both players use the same
computer; i.e., thereis no network communication. This application was chosen sinceit is
moderately complex (the fileout of Smalltalk code is on the order of 100K b). In addition, all user

interaction is through the transcript, so we can ignore the more complex Ul issues.

Asshown in Figure 7, the application is comprised of six classes (which together define over 100
methods). Other than the absence of atrue GUI, the application was written to take full
advantage of Smalltalk’s functionality. Blocks are used extensively, asin any other Smalltalk
application. Additionally base Smalltalk classes such as OrderedCollection, Dictionary, and Set

are used.

15 See[ORUL] for the rules to the game of Othello.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 33

I Object I

—I Game I

OthelloTextGame I

—I OthelloBoard I

—I OthelloBoardCoordinate I

_I OthelloBoardModel I

—I OthelloRules I

FIGURE 7: Architecture of the sample Smalltalk application.

3.1.2 TheTrandation Process

Since (as described in section 2.2.8) the tool is not able to translate primitive methods, it cannot
trandlate the base Smalltalk classes such as OrderedCollection and Set. Instead, these classes
were written in the Java language, and then compiled with a standard Java compiler. These
custom created classes simply wrap their Java equival ents with the interface expected by the
Smalltalk code. For example, visualworks.OrderedCollection.java stores an instance of

javautil.Vector (Java’s collection class) and contains a method definitions such as:

vi sual wor ks. Obj ect add_(vi sual works. Qbj ect) ;
vi sual wor ks. Qbj ect at_put _(vi sual works. Ohj ect,
vi sual wor ks. Obj ect) ;

vi sual wor ks. Obj ect removeFirst();

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 34

These manually created classes include appropriate metaclasses to implement the class-side of the
Smalltalk objects. For example, visuaworks._MetaOrderedCollection.java contains the

following method definitions:

vi sual wor ks. Gbject with_(vi uaI wor ks. Obj ect) ;
vi sual works. Qbject with with (visual works. Ool ect,
vi sual wor ks. Qbj ect) ;

Once the Smalltalk base classes are compiled, and the tool trandates the Smalltalk code to Java,
the Ul hasto be considered. We require asimple Transcript window that responds to #show:,
#er, and #tab. In addition the transcript hasto be able to accept a highlighted line of text asinput
(the Smalltalk procedure for input is to highlight a snippet of code and "do it"). A Smalltalk
transcript is able to execute any well formed Smalltalk syntax, our Java transcript is much more
limited and in fact, only recognizes the two commands expected in the game:

+ OthelloGame move: #d3'°

* OthelloGame newGame.

The Transcript itself has been implemented with two classes, as shown in Figure 8.

I Web Browser I

OthelloAppIet

Transcript

I GeneratedAppIication I

FIGURE 8: Anillustration of thetrandated architecture, showing theinteractions between the two classes
forming the Transcript window.

18 The argument can be anything in the range al to h8.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 35

OthelloApplet is a pure Java class which inherits from java.applet.Applet, and as such can be
embedded in any context appropriate to a Java applet (e.g., aweb browser). It contains, among

others the following method definitions:

public void show(java.lang. String);
public void cr();
public void tab();

While OthelloApplet is responsible all interaction with the web browser, Transcript deals with the
code trandlated from Smalltalk. The three methods cited above simply invoke their counterparts
in the instance of Transcript (which is stored by OthelloApplet). When a user highlights some

text and clicksthe "do it" button, OthelloApplet invokes the following method in Transcript:

public void evaluate(java.lang.String);

This method interprets the string (looking for one of the two commands), and invokes the proper

method in the generated code.

Hence we have an application that can run on any Java VM (including those embedded in
browsers) but was actually developed in Smalltalk. Figure 9 showsthe original Smalltalk view as

well asthe view of the translated application.”’

1 This application is available at [HONSUP].

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 36

Hrimapr Jirmeyshrg Java | Lan Fden bes sk [Beh 'l P e

B il e e il (e febar ke He

sz &lxlgje|al =]

.tlrc:oi:-:n-.q:l-w:ﬁi:l-rl A s 3 du.?LH l:-':'.;jr _D--.I_hjrl:lnl:jluj :J
= : i | =
B
o . w B
E i W
o
c] i |
H
T Humbse 1 | J
Cureani Playar b R, i L[-:I

= -

FIGURE 9: Viewsof both the original Smalltalk Transcript window, and the application as an applet within
aweb browser.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 37

4. Conclusion

This paper has proposed a method of trand ating Smalltalk applications into aform which can be
executed on aJavaVM. Smalltalk’s extensive use of blocks, its non-typed nature, and the
differences between Java's instance and static sides make such trandation non-trivial indeed. As
atest of these techniques, such atool has been implemented and tested using a moderately

complex applications.

Despite the successful translation of the sample application, the tool is ill in the prototype
stages. It isunable to deal with Ul other than the basic text-based functionality provided by the
transcript (and even this requires a small Java header to be manually implemented and compiled).
Also, the tool is unable to translate any classes that use primitive methods. The following

sections briefly outline proposed solutions.

4.1 FutureWork

411 Ul Builder

Smalltalk provides a two-step process to displaying a user interface. The interfaceis describedin
abstract terms, using interface specifications. These specifications describe the windows, scroll
bars, buttons, etc that make up the interface. This specification is passed to a UIBuilder which
builds the interface using components appropriate to the current platform. Smalltalk has a set of
classesto invoke interface components on a Unix (motif) system, another set for a PC (windows),
another for aMac, etc. By implementing a set of these classes that are able to display the
appropriate Java components, we could provide support for general Ul's. This implementation

would consist of nothing more than wrappersfor AWT classes.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 38

The UlBuilder itself iswritten in Smalltalk, and could therefore be converted to Java using the
tool itself. Likewise, the specifications are extremely simple Smalltalk objects (in most cases,
nothing more than an Array) and would be trivial to trandate. In this manner it should be

possible to provide support for general interfaces.

4.1.2 Smalltalk Base Classes

The ability to trand ate Smalltalk’s base classes means that the tool must be able to deal with
primitive methods. Once all primitives have been documented, it would be possible to create
Java byte code strings which perform the same task. From this point it would be atrivial task to
extend the tool to insert these byte code snippets every time the corresponding primitiveis

encountered.

Thiswould allow the tool to trandate any of the existing Smalltalk classes. A possible use of this
would be to trand ate the Smalltalk collection hierarchy to make it available as a class library for

tradition Java devel opment.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 39

5. References

[BERGO7]

[FLAN9G |

Berg CIiff, “How Do | Create a Java Bean”, Dr. Dobb’s Journal, September
1997.

Flanagan David, Java in a Nutshell, O'Reilly & Associates Inc., 1996.

[GAMMA94 | Gamma, et. al, Design Patterns - Elements of Reusable Object-Oriented

[HIST]

[LIND97]

[MEYEQ7]

Software, Addison Wesley Longman Inc., 1994.

Bergin Thomas & Gibson Richard, The History of Programming Languages,
Addison Wesley Pub Co., 1996.

Lindholm Tim & Yellin Frank, The Java Virtual Machine Specification, Addison
Wesley, 1997.

Meyer Jon & Downing Troy, Java Virtual Machine, O’Reilly & Associates Inc.,
1997.

5.1 Related Web Pages

[APPLIED] Applied Reasoning: A way of creating a Java front end for a Smalltalk server:
http://www.AppliedReasoning.com/cbframe.htm.

[CHIMU] A syntax-level comparison of Java and Smalltalk:
http://www.chimu.com/publications/JavaSmalltalkSyntax.html.

[HONSUP] A web page with data relevant to this paper (including links to other sites listed
in this section):
http://www.cyberus.com/~eidsness/jasper.

[ORISA] ORISA: A tool which forms hypotheses about variable types:
http://www.softwarezentrum.de/orisa/Framed.Home.E.html.

[ORUL] The rules to the game of Othello:
http://www.armory.com/~iioa/othguide/fag/othellorules.html.

[STIC] A language-level comparison of Java and Smalltalk:
http://www.stic.org/Research/IDC97/stic.htm.

[STX] A Java VM implemented in Smalltalk (link may be dead)
http://home.t-online.de/home/exept/stja97_e.html.

[USENET] A thread from comp.lang.smalltalk discussing the various way of converting
from Smalltalk to Java. This discussion focuses on a source code level
translation:
<extremely long URL, use the link in [HONSUP] instead>

O copyright Andrew Eidsness, 1997-1999 April 19, 1999

aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 40

6. Appendix A: Test Plan

6.1 Introduction

This document describes a plan to test the ST-JAV A project. Java class files have been generated
from several Smalltalk objects. These class files are described in section 2 and are the base of all
test cases. Section 3 presents a table summarizing all test cases, and their current status. Section 4
describes each test casein more detail. For each case, thereisacopy of the smalltalk source for
applicable methods, the Java source (i.e. the test case driver), and the expected result. This

document isintended to be used in concert with the test cases.

6.2 Overview

Several Java classfiles have been generated from Smalltalk objects. Additionally, afew support
class files have been generated from Java source (e.g. Transcript, Array, etc.) These support
classes are not shown here. See the main document for more information. There are three
smalltalk classes;, VerySimpleTestParent, VerySimpleTest, and VerySimpleTestChild. Figure
A-1 describes the inheritance hierarchy for the generated classfiles. The following subsections

show the Smalltalk source for each of the classes.

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 41

I java.lang.Object I

visualworks.Object I

—I visualworks.VerySimpleTestParent I

visualworks.VerySimpleTest I

visualworks.VerySimpleTesChild I

—I visualworks.__MetaObject I

visualworks.__MetaVerySimpleTestParent I

visualworks. __ MetaVerySimpleTest I

visualworks. __MetaVerySimpleTesChild I

FIGURE A-1: Inheritance hierarchy for the test objects

VerySimpleTestParent

bj ect subcl ass: #VerySi nmpl eTest Par ent
i nst anceVari abl eNanes: '’
cl assVari abl eNanmes: '’
pool Di ctionaries: '’

category: ' ST Java- Sanpl es’

VerySimpleTest

VerySi npl eTest Parent subcl ass: #VerySi npl eTest
i nst anceVari abl eNanmes: ’anlnstVar ’
cl assVari abl eNanes: ' ACl assVar '’
pool Di ctionaries: '’
category: ' ST Java- Sanpl es’

VerySimpleTestChild

VerySi npl eTest subcl ass: #VerySi npl eTest Child
i nstanceVari abl eNanes: '’

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects

Page 42

cl assVari abl eNanes:
pool Di cti onari es:
category: ' ST Java- Sanpl es’

6.3 Test Case Status

Test Case Title Succeeded On

1 | Loca Variable Modification/Accessng | ssing [Feb 6, 1998 | 6, 1998 [Feb6,1998 | 6, 1998

2 Basic Instance-side Block Evaluation Feb6,1998 | Feb6,1998 | 44
3 Instance Variable M odification/Accessing Feb 6,1998 | Feb 6, 1998 | 43
4 Class Variable Modification/Accessing Feb6,1998 | Feb6,1998 |44
5 Basic Class-side Block Evaluation Feb6,1998 | Feb6,1998 | 44
6 Class-side Messaging with Arguments Feb6,1998 | Feb6,1998 |45
7 Evaluating Blocks With Arguments Feb 6,1998 | Feb 6, 1998 | 45
8 Evaluating Nested Blocks Feb6,1998 | Feb6,1998 | 46
9 Evaluating aBlock Stored in aLocal Variable | Feb 6,1998 | Feb6,1998 | 46
10 Pass a Block as an Argument Feb 6,1998 | Feb 6, 1998 | 47
11 | Cascaded Messages Feb6,1998 | Feb6,1998 | 47
12 | Instance-side Super Test Feb6,1998 | Feb6,1998 | 48
13 | Class-side Super Test Feb 6,1998 | Feb6,1998 | 50
14 | Smalltalk Translated New Feb 6,1998 | Feb6,1998 | 52
15 Messaging a Smalltalk Constructed Object Feb 6,1998 | Feb 6, 1998 | 52
16 | Chaining Message Sends Feb 15, 1998 | Feb 15,1998 | 52

TABLE A-1: Test casetitleswith current status.

6.4 Test Case Descriptions

A small java program has been written to drive each test case. All test files can be found in the

TestSuite directory. Each test case is described with three sections. Thefirgt lists the smalltalk

source, the second gives the Java driver filename as well as the applicable code. The final section

shows the expected result (this should be displayed on the window from which the test plan was

executed). All test cases should be executed from a system prompt, using the javainterpreter.

O copyright Andrew Eidsness, 1997-1999
aeidsness@acm.org

April 19, 1999

Generating Java Class Files from Smalltalk Objects Page 43

6.4.1 Local Variable Modification/Accessing

Smalltalk Source:

Ver ySi npl eTest >>#val ueToOne
| locall |
locall := 1.
A ocal 1

Java Driver Program:
Testl.java

vi sual wor ks. Cbj ect vst = new vi sual works. VerySi npl eTest () ;
System out. println(vst.valueToOne().toString());

Expected Result:

1

6.4.2 Basic |nstance-side Block Evaluation

Smalltalk Source:

Ver ySi npl eTest >>#useBl ock
"VerySi npl eTest - inside the block’] val ue.
A VerySi npl eTest - after the bl ock’

Java Driver Program:
Test2.java:

vi sual wor ks. Qbj ect vst = new vi sual works. VerySi npl eTest () ;
System out. println(vst.useBl ock().toString());

Expected Result:

VerySimpleTest - after the block

6.4.3 Instance Variable Modification/Accessing

Smalltalk Source:

Ver ySi npl eTest >>#set | nst Var
aninstVar ;= ‘an instance variable value’

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 44
Ver ySi npl eTest >>#get | nst Var
Manl nst Var
Java Driver Program:
Test3.java:
vi sual wor ks. Qbj ect vst = new vi sual works. VerySi npl eTest () ;
vst. setl nstVar ()
Systemout. println(vst.getlnstVar().toString());
Expected Result:
an instance variable value
6.4.4 ClassVariable Modification/Accessing
Smalltalk Source:
Ver ySi npl eTest (cl ass? >>#set Cl assVar
AC assVar := "a class variable val ue’
Ver ySi npl eTest (cl ass) >>#get | nst Var
Manl nst Var
Java Driver Program:
Testd.java:
visualworks.Smalltalk.at_(“VerySimpleTest").setClassVar();
System.out.printin(visualworks.Smalltalk.at_(
“VerySimpleTest”).getInstVar().toString());
Expected Result:
aclassvariable value
6.4.5 Basic Class-side Block Evaluation
Smalltalk Source:
Ver ySi npl eTest (cl ass) >>#useBl ock
NVerySimpleTest(class) - inside block'] value.
NVerySimpleTest(class) - after block'
O copyright Andrew Eidsness, 1997-1999 April 19, 1999

aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 45

Java Driver Program:
Tests.java:

System out. printl n(visual works. Smal I tal k. at_(
“VerySimpleTest”).useBlock().toString());

Expected Result:

VerySimpleTest(class) - inside block

6.4.6 Class-side Messaging with Arguments

Smalltalk Source:

Ver ySi nB.I eTest (cl ass) >>#echoArg: anhj ect
AanObject

Java Driver Program:
Test6.java:

visualworks.Object result;

result = visualworks.Smalltalk.at_(“VerySimpleTest").echoArg_(
new visualworks.literals.Integer(10));

System.out.printin(result.toString());

Expected Result:

10

6.4.7 Evaluating Blockswith Arguments

Smalltalk Source:

Ver ySi npl eTest >>#useAr gBl ock
N :aBlockArg | aBlockArg | valueWithArguments: #(654)

Java Driver Program:
Test7.java

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.useArgBlock().toString());

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 46
Expected Result:
654
6.4.8 Evaluating Nested Blocks
Smalltalk Source:
Ver ySi npl eTest >>#nest edBl ock
ATI[~true] value] value] value. false] val ue
Java Driver Program:
Test8.java:
vi sual wor ks. Qbj ect vst = new vi sual works. VerySi npl eTest () ;
System out. println(vst.nestedBl ock().toString());
Expected Result:
true
6.4.9 Evaluating aBlock Stored in aLocal Variable
Smalltalk Source:
Ver ySi npl eTest >>#l| ocal Var Bl ock
aBl ock
aBlock :=[:arg | "arg].
aBl ock val ue: true
Java Driver Program:
Test9.java:
vi sual wor ks. Obj ect vst = new vi sual works. VerySi npl eTest () ;
Systemout. println(vst.local VarBl ock().toString());
Expected Result:
true
O copyright Andrew Eidsness, 1997-1999 April 19, 1999

aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects

Page 47

6.4.10 Passa Block asan Argument

Smalltalk Source:

Ver ySi npl eTest >>#useEval Bl ock
self evalBlock: [:arg | "arg]

Ver ySi npl eTest >>#eval Bl ock: aBl ock
aBl ock val ue: true.
~fal se

Java Driver Program:

Test10,java:

vi sual wor ks. Qbj ect vst = new vi sual wor ks. VerySi npl eTest ()
System out. println(vst.useEval Bl ock().toString()):;

Expected Result:

true

6.4.11 Cascaded M essages

Smalltalk Source:

Ver ySi npl eTest >>#cascadeTest
"sel f getlnstVar;
val ueToOne

Java Driver Program:

Testlljava

vi sual wor ks. Cbj ect vst = new vi sual works. VerySi npl eTest () ;

Systemout. println(vst.cascadeTest().toString());

Expected Result:

1

O copyright Andrew Eidsness, 1997-1999
aeidsness@acm.org

April 19, 1999

Generating Java Class Files from Smalltalk Objects Page 48

6.4.12 Instance-side Super Test

Thistest isactualy four testsrolled into one. It demonstrates that the super class method (and
only the super class method) will be found when needed. The first sub-test case should succeed,
the final three should be unable to find the proper method (and thus throw a DoesNotUnderstand
exception).

Smalltalk Source:

Ver ySi npl eTest >>#i nst ancePar ent Exi st Test

Transcri pt show. ' VerySi npl eTest >>#i nst ancePar ent Exi st Test -
START ; cr.

super instanceParent Exi st Test .

Transcri pt show. ' VerySi npl eTest >>#i nst ancePar ent Exi st Test -

END ; cr
Ver ySi npl eTest >>#i nst ancePar ent Absent Exi st Cl assCur r ent Test
Transcri pt
show.
"VerySi npl eTest >>#i nst ancePar ent Absent Exi st C assCur r ent Test
- START;
cr.
super instanceParent Absent Exi st Cl assCurrent Test.
Transcri pt
show.
"VerySi npl eTest >>#i nst ancePar ent Absent Exi st C assCurrent Test -
END ;
cr

Ver ySi npl eTest >>#i nst ancePar ent Absent Exi st Cl assTest
Transcri pt show
"VerySi npl eTest >>#i nst ancePar ent Absent Exi st Cl assTest
- START ; cr.
super instanceParent Absent Exi st Cl assTest .
Transcri pt show
" VerySi npl eTest >>#i nst ancePar ent Absent Exi st Cl assTest
- END ; cr

Ver ySi npl eTest >>#i nst ancePar ent Absent Test

Transcri pt show ' VerySi npl eTest >>#i nst ancePar ent Absent Test -
START'; cr.

super instanceParent Absent Test.

Transcri pt show ' VerySi mpl eTest >>#i nst ancePar ent Absent Test -
END ; cr

Ver ySi npl eTest Par ent >>#i nst ancePar ent Exi st Test
Transcri pt show:
"VerySi npl eTest Par ent >>#i nst ancePar ent Exi st Test ' ; cr

Ver ySi npl eTest (cl ass) >>#i nst ancePar ent Absent Exi st Cl assCur r ent Test
Transcript show

"VerySi npl eTest (¢l ass) >>#i nst ancePar ent Absent Exi st Cl assCurrent T

est’; cr

Ver ySi npl eTest Par ent (cl ass) >>#i nst ancePar ent Absent Exi st Cl assTest
Transcript show

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects

Page 49

" VerySi npl eTest Par ent (¢l ass) >>#i nst ancePar ent Absent Exi st O assTe

st’; cr

Java Driver Program:

Test12 java

vi sual wor ks. Cbj ect vst = new vi sual works. VerySi npl eTest () ;

vst.instancePar ent Exi st Test () ;

System.out.printin(*”);

try { vst.instanceParentAbsentTest(); }

catch(Throwable t) { System.out.printin(t.toString()); }
System.out.printin(*”);

try { vst.instanceParentAbsentExistClassTest(); }
catch(Throwable t) { System.out.printin(t.toString()); }
System.out.printin(*”);

try { vst.instanceParentAbsentExistClassCurrentTest(); }
catch(Throwable t) { System.out.printin(t.toString()); }

Expected Result:
VerySimpleTest>>#instanceParentExistTest - START
VerySimpl eT estParent>>#instanceParentExi st T est

VerySimpleT est>>#instanceParentExistTest - END

VerySimpleTest>>#instanceParentAbsentTest - START

visualworks.DoesNotUnderstand: instanceParentAbsentTest

VerySimpleTest>>#instanceParentAbsentExistClassTest - START

visualworks.DoesNotUnderstand: instanceParentAbsentExistClassTest

VerySimpleT est>>#instanceParentAbsentExistClassCurrentTest - START

visualworks.DoesNotUnderstand: instanceParentAbsentExistClassCurrentTest

O copyright Andrew Eidsness, 1997-1999
aeidsness@acm.org

April 19, 1999

Generating Java Class Files from Smalltalk Objects Page 50

6.4.13 Class-side Super Test

This test is actually four tests rolled into one. It demonstrates that the superclasses’ method (and
only the superclasses' method) will be found when needed. The first sub-test case should
succeed, the final three should be unable to find the proper method (and thus throw a

DoesNotUnderstand exception).

Smalltalk Source:

Ver ySi npl eTest (cl ass) >>#cl assPar ent Exi st Test

Transcript show ' VerySinpl eTest (cl ass)>>#cl assPar ent Exi st Test
- START; cr.

super cl assParent Exi st Test .

Transcript show ' VerySinpl eTest (cl ass)>>#cl assPar ent Exi st Test

- END; cr
Ver ySi npl eTest (¢l ass) >>#cl assPar ent Absent Exi st O assCurr ent Test
Transcri pt
show:
"VerySi npl eTest (cl ass) >>#cl assPar ent Absent Exi st | nst anceCur r ent Test
- START ;
cr.
super cl assPar ent Absent Exi st 1 nstanceCurrent Test .
Transcri pt
show:
"VerySi npl eTest (cl ass) >>#cl assPar ent Absent Exi st | nst anceCur r ent Test
- END ;
cr

Ver ySi npl eTest (cl ass) >>#cl assPar ent Absent Exi st O assTest
Transcri pt show
"VerySi npl eTest (cl ass) >>#cl assPar ent Absent Exi st | nst anceTest
- START'; cr.
super cl assPar ent Absent Exi st | nstanceTest.
Transcri pt show
"VerySi npl eTest (¢l ass) >>#cl assPar ent Absent Exi st | nst anceTest
- END ; cr

VerySi npl eTest (cl ass) >>#cl assPar ent Absent Test

Transcript show ' VerySinpl eTest (cl ass) >>#cl assPar ent Absent Test
- START'; cr.

super cl assPar ent Absent Test .

Transcript show ' VerySi npl eTest (cl ass) >>#cl assPar ent Absent Test
- END; cr

Ver ySi npl eTest Par ent (¢l ass) >>#cl assPar ent Exi st Test
Transcri pt show
"VerySi npl eTest Par ent (cl ass) >>#cl assPar ent Exi st Test’ ; cr

Ver ySi npl eTest >>#cl assPar ent Absent Exi st | nst anceCurr ent Test
Transcri pt show

" Ver ySi npl eTest >>#cl assPar ent Absent Exi st | nstanceCurrent Test’ ;
cr

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects

Page 51

Ver ySi npl eTest Par ent >>#cl assPar ent Absent Exi st | nst anceTest
Transcript show

" Ver ySi npl eTest Par ent >>#cl assPar ent Absent Exi st | nst anceTest’ ;

cr

Java Driver Program:

Testl3java

vi sual wor ks. Obj ect vstC ass =
visualworks.Smalltalk.at_(“VerySimpleTest”);

vstClass.instanceParentExistTest();

System.out.printin(*");

try { vstClass.instanceParentAbsentTest(); }

catch(Throwable t) { System.out.printin(t.toString()); }
System.out.printin(*”);

try { vstClass.instanceParentAbsentExistClassTest(); }
catch(Throwable t) { System.out.printin(t.toString()); }
System.out.printin(*”);

try { vstClass.instanceParentAbsentExistClassCurrentTest(); }
catch(Throwable t) { System.out.printin(t.toString()); }

Expected Result:
VerySimpleT est(class)>>#classParentExistTest - START
VerySimpleT estParent(class)>>#classParentExistTest

VerySimpleT est(class)>>#classParentExistTest - END

VerySimpleT est(class)>>#classParentAbsentTest - START

visualworks.DoesNotUnderstand: classParentAbsentTest

VerySimpleT est(class)>>#classParentAbsentExistClassTest - START

visualworks.DoesNotUnderstand: classParentA bsentExistClassT est

V erySimpl eT est(class)>>#classParentA bsentExistinstanceCurrentTest - START

visualworks.DoesNotUnderstand: classParentAbsentExistinstanceCurrentTest

O copyright Andrew Eidsness, 1997-1999
aeidsness@acm.org

April 19, 1999

Generating Java Class Files from Smalltalk Objects Page 52

6.4.14 Smalltalk Translated new (i.e. object construction without Java’s new)

Smalltalk Source:

Ver ySi npl eTest Chi | d(cl ass) >>#new
Asuper new

Java Driver Program:

Testld.java:

System out. println(visual works. Smal |l tal k. at_(
“VerySimpleTestChild"). _new().toString());

Expected Result:

visualworks.VerySimpleTestChild

6.4.15 Messaging a Smalltalk Constructed Object

Smalltalk Source:

Ver ySi npl eTest Chi | d(cl ass) >>#new
Asuper new

Ver ySi npl eTest >>#useBl ock
F'Very&mpleTest - inside the block'] value.
NVerySimpleTest - after the block’

Java Driver Program:

Testl5java

System.out.printin(visualworks.Smalltalk.at_(
“VerySimpleTestChild”)._new().useBlock().toString());

Expected Result:

VerySimpleTest - after the block

6.4.16 Chaining Messages Sends

Smalltalk Source:

Ver ySi npl eTest >>#chai nedMessageTest
7self setinstVar getinstVar

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Generating Java Class Files from Smalltalk Objects Page 53

Ver ySi npl eTest >>#set | nst Var
aninstVar := ‘an instance variable value’

Ver ySi npl eTest >>#get | nst Var
AaninstVar

Java Driver Program:
Testl6.java

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.printin(vst.chainedMessageTest().toString());

Expected Result:

an instance variable value

O copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

