
Generating Java Class Files from Smalltalk Objects

Author: Andrew Eidsness
Supervisor: Dr. W.R. LaLonde, B.A.Sc., M.A.Sc., Ph.D.
Date: April 19, 1999
Version: 1.1
Prepared For: Carleton University course 95.495B (Honour’s Project)

© copyright Andrew Eidsness, 1997-1999

Generating Java Class Files from Smalltalk Objects Page i

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Preface

1. Abstract

Smalltalk is a mature object oriented language. Years of development have yielded a powerful,

robust development environment that is suitable for a variety of projects. The financial sector

appreciates its rapid development capabilities, as well as the ease with which changes can be

implemented. At the other end of the spectrum, the embedded processing community likes the

byte code interpreted nature of the language. A powerful VM can be used for development, and a

custom VM can be written to run the same code in an embedded system.

While this is all good, twenty years of development has not produced a standard Smalltalk VM.

The market is fragmented by several vendors, all producing a competing (and expensive) product.

The Java language was founded on many of the same principles as Smalltalk, indeed many of its

capabilities were taken from Smalltalk. Java is an object oriented language that is compiled to

byte code. This byte code can be run on any machine implementing the proper code interpreter.

The rapidly growing popularity of Java can be attributed to the availability of interpreters for a

wide variety of platforms. Java is still in its infancy – performance, features, etc. can only

improve. Additionally, Sun appears to be strong enough politically to prevent the Java market

from becoming fragmented.

Java really consists of two components. There is a language (Java) and a byte code specification

(Java Virtual Machine). We can consider the Java VM to be nothing more than a new platform

(similar to any new product line; e.g., Sparc10, Sparc 2, etc). The most common way of

generating Java byte code is to compile it from programs written in the Java language. However,

the language is fully decoupled from the byte code, and this need not be the case. This project

Generating Java Class Files from Smalltalk Objects Page ii

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

proposes that it is possible to generate Java byte code from the Smalltalk syntax. Programs

would continue to be written in the full Smalltalk environment, then this tool could be used to

generate a fully functioning Java system.

2. Acknowledgements

I would like to thank Dr. LaLonde for his advice and encouragement throughout this project,

especially during the preparation of this paper.

VisualWorks is a registered trademark of ObjectShare Inc.(formerly ParcPlace-Digitalk Inc).

Java is a registered trademark of Sun Microsystems, Inc. All other product and company names

and logos are trademarks or registered trademarks of their respective companies.

Generating Java Class Files from Smalltalk Objects Page iii

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

3. Table of Contents

PREFACE .. I

1. ABSTRACT... I

2. ACKNOWLEDGEMENTS... II

3. TABLE OF CONTENTS .. III

4. LIST OF FIGURES .. V

5. LIST OF TABLES... VI

1. INTRODUCTION ... 1

1.1 SUPPORTING SMALLTALK ON A NEW PLATFORM ... 2
1.2 DOCUMENT OVERVIEW .. 4

2. METHODOLOGY .. 5

2.1 INTRODUCTION... 5
2.2 MISCELLANEOUS DETAILS ... 5

2.2.1 Garbage Collection... 6
2.2.2 Private vs. Public Members .. 6
2.2.3 Dynamic Binding, Polymorphism, and Types ... 7
2.2.4 Inheritance.. 7
2.2.5 Base Types .. 8
2.2.6 The Smalltalk #perform: Method .. 9
2.2.7 Method Selector Mapping... 9
2.2.8 Smalltalk Primitives .. 10

2.3 JAVA CLASS FILES.. 11
2.3.1 Namespaces .. 11
2.3.2 Object and Inheritance ... 11
2.3.3 Class Files... 12
2.3.4 Graphical Interfaces ... 12

2.4 TYPES... 13
2.4.1 DoesNotUnderstand Exception... 15
2.4.2 Summary ... 16

2.5 BLOCKS.. 17
2.5.1 Introduction .. 17
2.5.2 Overview of Solution... 17
2.5.3 Block Evaluation... 18

2.5.3.1 Block Arguments ...19
2.5.3.2 Summary..20

2.5.4 Variable Accessing and Modification ... 20
2.5.4.1 Critique of Scope.java..22

2.5.5 Returning from Blocks .. 23
2.5.5.1 Introduction ...23
2.5.5.2 Implementation of Implicit Returns ...24
2.5.5.3 Implementation of Explicit Returns ...24

2.5.6 Summary ... 26
2.6 SMALLTALK CLASS VS. JAVA STATIC .. 27

2.6.1 The Smalltalk System Dictionary .. 28
2.6.2 Summary ... 29

2.7 INHERITANCE ... 30

3. RESULTS 32

3.1 SMALLTALK OTHELLO ... 32
3.1.1 Overview ... 32

Generating Java Class Files from Smalltalk Objects Page iv

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

3.1.2 The Translation Process ... 33

4. CONCLUSION .. 37

4.1 FUTURE WORK... 37
4.1.1 UI Builder ... 37
4.1.2 Smalltalk Base Classes ... 38

5. REFERENCES... 39

5.1 RELATED WEB PAGES .. 39

6. APPENDIX A: TEST PLAN... 40

6.1 INTRODUCTION... 40
6.2 OVERVIEW ... 40
6.3 TEST CASE STATUS .. 42
6.4 TEST CASE DESCRIPTIONS.. 42

6.4.1 Local Variable Modification/Accessing.. 43
6.4.2 Basic Instance-side Block Evaluation... 43
6.4.3 Instance Variable Modification/Accessing ... 43
6.4.4 Class Variable Modification/Accessing .. 44
6.4.5 Basic Class-side Block Evaluation ... 44
6.4.6 Class-side Messaging with Arguments.. 45
6.4.7 Evaluating Blocks with Arguments ... 45
6.4.8 Evaluating Nested Blocks ... 46
6.4.9 Evaluating a Block Stored in a Local Variable .. 46
6.4.10 Pass a Block as an Argument ... 47
6.4.11 Cascaded Messages.. 47
6.4.12 Instance-side Super Test... 48
6.4.13 Class-side Super Test ... 50
6.4.14 Smalltalk Translated new (ie. object construction without Java’s new)............................. 52
6.4.15 Messaging a Smalltalk Constructed Object.. 52
6.4.16 Chaining Messages Sends ..52

Generating Java Class Files from Smalltalk Objects Page v

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

4. List of Figures

FIGURE 1: (A) THE TRADITIONAL WAY OF RUNNING SMALLTALK ON A NEW PLATFORM,
JUST WRITE A NEW SMALLTALK VM. (B) HOW THIS WOULD APPLY TO THE
JAVA VM (NOTE THE REDUNDANCY OF TWO VM’S). (C) THIS PROJECT
ELIMINATES A STEP BY COMPILING DIRECTLY TO THE JAVA VM........................3

FIGURE 2: INHERITANCE HIERARCHY FOR GENERATED CLASSES, SHOWING WHERE IT TIES
INTO THE JAVA HIEARARCHY..11

FIGURE 3: DIAGRAM SHOWING HOW METHOD TABLES ARE INHERITED. EVEN THOUGH
SUBCLASS DOESN’T IMPLEMENT METHOD1(), IT INCLUDES AN ENTRY IN ITS
TABLE. THIS IS NOT DRAWN TO SCALE IN TERMS OF CODE LOCATIONS, ETC. IT
IS JUST AN ABSTRACT DIAGRAM USED TO ILLUSTRATE THE CONCEPT.14

FIGURE 4: DIAGRAM OF RELATIONSHIP BETWEEN CLASS TYPES IN THE RESULTING
PACKAGE. THE BASE CLASSES ENHANCE SOME, BUT NOT ALL OF THE
FUNCTIONALITY OF THE BASIC JAVA VM. ...18

FIGURE 5: EXAMPLE OF HOW SCOPES CAN BE NESTED, SHOWING BOTH THE SMALLTALK
CODE AND THE CORRESPONDING JAVA STRUCTURE. THE BINDINGS ARRAY IS
DECLARED AS TYPE VISUALWORKS.OBJECT, THE CONTAINED STRING IS
ACTUALLY OF TYPE VISUALWORKS.LITERALS.STRING, WHICH INHERITS FROM
VISUALWORKS.OBJECT. ..21

FIGURE 6: AN EXAMPLE INHERITANCE HIERARCHY WHICH WILL BE USED TO DESCRIBE
METHOD AND VARIABLE INHERITANCE. PARENTCLASS AND SUBCLASS
PROVIDE IMPLEMENTATIONS OF METHOD1(), BUT MIDDLECLASS DOES NOT. .30

FIGURE 7: ARCHITECTURE OF THE SAMPLE SMALLTALK APPLICATION.............................33

FIGURE 8: AN ILLUSTRATION OF THE TRANSLATED ARCHITECTURE, SHOWING THE
INTERACTIONS BETWEEN THE TWO CLASSES FORMING THE TRANSCRIPT
WINDOW..34

FIGURE 9: VIEWS OF BOTH THE ORIGINAL SMALLTALK TRANSCRIPT WINDOW, AND THE
APPLICATION AS AN APPLET WITHIN A WEB BROWSER.36

FIGURE A-1: INHERITANCE HIERARCHY FOR THE TEST OBJECTS.......................................41

Generating Java Class Files from Smalltalk Objects Page vi

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

5. List of Tables

TABLE 1: COMPARISON OF SOME OF THE SIMILARITIES AND DIFFERENCES BETWEEN
SMALLTALK AND JAVA LANGUAGE FEATURES. ...6

TABLE 2: CORRESPONDANCE BETWEEN SMALLTALK BASE TYPES AND THE JAVA
CLASSES THAT ARE USED IN THE GENERATED SYSTEM..8

TABLE 3: MAPPINGS FOR TRANSLATING SMALLTALK OPERATORS TO JAVA SELECTOR
STRINGS. ..10

TABLE 4: COMPARISON OF SMALLTALK AND JAVA LANGUAGE FEATURES IN TERMS OF
THE CLASS/STATIC SIDE. ..27

TABLE A-1: TEST CASE TITLES WITH CURRENT STATUS. ...42

Generating Java Class Files from Smalltalk Objects Page 1

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

1. Introduction

Since its recent introduction, Java has gained a huge following, and it is beginning to appear as

though the Smalltalk community will embrace this new platform1. Witness the recent

abandonment of Smalltalk by ObjectShare in its move to Java and a similar shift of focus at

Carleton University.

Smalltalk’s introduction twenty years ago prompted the object oriented revolution, and the

language has been successfully used for numerous projects, this success has lead to a wide range

of research intent on further improvements to the environment. Despite this success, and

although the language provides an excellent development environment, Smalltalk does not seem

to have lived up to its promise of a universal execution environment. Once cited reason has been

the need for the high cost of the Smalltalk VM, a policy for which vendors have been widely

criticized.

Similar to Smalltalk, the term Java has two meanings, it refers to both a machine-independent

byte code specification, and a high level programming language which can be compiled to this

language. It is the byte code specification (hereafter referred to as the Java VM) that has made

Java so popular. The Java language itself is still in its infancy, and is constantly undergoing major

revisions. This state of constant flux is blamed for the failure of a large number of projects, most

notably Corel’s Java Office Suite project. The conclusion seems to be that the Java language is

still too immature for serious development.

1 For an example see the Usenet thread at [USENET] which taken is from a recent discussion on comp.lang.smalltalk.

Generating Java Class Files from Smalltalk Objects Page 2

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Below the language level, the Java VM is essentially unchanged since the initial version. In

addition, all Java VM’s are backwards compatible to the original version of the byte code,

meaning that code targeted for the initial version of the VM will run on any subsequent VM.

More importantly, contrary to the approach of the Smalltalk vendors, Sun freely distributes Java

VM’s for a wide variety of environments.

Hence we have identified the following points:

• Smalltalk provides an excellent development environment. Code reuse and an

excellent debugging environment allow rapid application development and easy

maintenance of existing applications.

• Code targeted to the Java VM can be executed on a diverse set of hardware platforms

(including embedded environments such as USRobotic’s PalmPilot). Further, the

popularity of the Java VM makes it extremely likely that new platforms will provide

their own implementations of the Java byte code interpreter.

These points seem to suggest that it would be advantageous to develop programs using some

Smalltalk environment (ObjectShare’s VisualWorks has been targeted for this project) and then

deploy the application on the Java VM. By targeting version 1.0.2 of the VM we ensure that the

code is not subject to future changes. Such a tool would, at the very least, provide an easy way to

demo Smalltalk applications (since support for at least version 1.0.2 of the Java VM is included in

all modern web browsers).

1.1 Supporting Smalltalk on a New Platform

In general, platform support is added to Smalltalk by ensuring that the final code can run on the

new platform; e.g., Intel chips require one machine language, Motorolla chips another, and the

Generating Java Class Files from Smalltalk Objects Page 3

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Java VM yet another. Figure 1a shows how Smalltalk would function on top of a new hardware

platform. The Smalltalk byte code is unchanged, instead a new interpreter is created. Following

this approach for the Java translation would lead to an implementation of the Smalltalk VM that

runs on top of the Java VM, as shown in Figure 1b. Although feasible, this project proposes to

reduce the overhead incurred by running two virtual machines; our goal instead is to compile the

Smalltalk objects directly to Java byte code to create a system as in Figure 1c.

Smalltalk Application

Smalltalk VM

Hardware Platform

 (a)

Smalltalk Application

Smalltalk VM

Java VM

Hardware Platform

 (b)

Smalltalk Application

Java VM

Hardware Platform

 (c)

FIGURE 1: (a) The traditional way of running Smalltalk on a new platform, just write a new Smalltalk VM.
(b) How this would apply to the Java VM (NOTE the redundancy of two VM’s).
(c) This project eliminates a step by compiling directly to the Java VM.

The second point to consider when supporting a new platform is the creation of user interface

components for that platform. The development of UI components lies outside the scope of this

project, however since the VisualWorks system has a well defined API for its user interface

components, it is a relatively straightforward task to create Java classes which wrap the AWT2

components with the appropriate interfaces. A rudimentary interface is provided with a Java

class that is a scaled-down version of Smalltalk’s Transcript window. This Transcript allows text

output, and a limited form of text input. In addition, the Transcript class has been wrapped in a

2 The abstract windowing toolkit is the package that supports graphical interfaces in Java programs.

Generating Java Class Files from Smalltalk Objects Page 4

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Java Applet, so that the translated application can be embedded in any web page. Section 3

describes this process in more detail.

1.2 Document Overview

Section 2 begins by describing the trivial details involved in translating a Smalltalk application.

The bulk of the section describes the more complicated parts of such a translation; e.g., how

Smalltalk blocks are handled. Section 3 gives an idea of the abilities of the tool by describing the

process of converting a moderately complex application to its Java equivalent. Appendix A

describes the test plan which has been successfully handled by the tool.

Additionally, a web page has been created as a form of support for this paper. It includes links to

relevant web sites as well as a working version of the sample application. This page is currently

at [HONSUP].

Generating Java Class Files from Smalltalk Objects Page 5

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2. Methodology

2.1 Introduction

Our goal is to develop a tool that is able to translate a working Smalltalk system to its equivalent

Java byte code representation. We want the translated system to directly use the functionality of

the Java VM as much as possible. However, due to language differences, it may be necessary to

implement a partial Smalltalk VM in Java code. Our secondary goal is use Java byte codes as

much as possible, making additions only when absolutely necessary. Additionally, all extensions

will be implemented in Java, so they can run on top of any Java VM.3

2.2 Miscellaneous Details

This section defines the key language features, and explains the solution for all trivial problems.

The following sub-sections describe the larger issues in more detail. Table 1 outlines some of the

similarities and differences between the Smalltalk and Java language features.

Smalltalk Java

Object oriented object oriented

Memory managed by garbage collector memory managed by garbage collector

Single inheritance of code and data single inheritance of code and data

Dynamic binding pseudo-dynamic binding

non-typed typed

Instances access own methods via self instances access own methods via this

Inheritance available on both instance and

class sides

inheritance available on instance side only

Method lookup based on instance method lookup based on declared type as

well as instance

3 As opposed to some projects which propose a modified Java VM.

Generating Java Class Files from Smalltalk Objects Page 6

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

all methods globally visible some methods private to class or subclasses

all instance variables visible only to class and

subclass

some instance variables globally visible

Equivalent of function pointers (#perform:) no function pointers

parts of method selector mixed with method

arguments

methods defined with complete method

selector followed by list of arguments

Symbol as literal N / A

TABLE 1: Comparison of some of the similarities and differences between Smalltalk and Java language
features.4

2.2.1 Garbage Collection

Smalltalk and Java are virtually identical in the way that memory is managed. Memory is

transparently allocated when a new instance is created, and transparently returned when an

instance is no longer referenced. For this reason memory issues can be ignored.

It could be argued that this is one of the greatest similarities between Smalltalk and Java.

Consider for example, the difficulties that would arise from attempting such a translation from

C++ source code. Objects created and released with the new and delete keywords would be

straightforward, but there is not obvious solution for dealing with other pointer manipulations.

2.2.2 Private vs. Public Members

In Java, methods can be declared as private (visible only within the class), protected (visible only

within the class and its subclasses), or public (visible to everyone). In Smalltalk all methods are

implicitly public. Therefore, all methods generated from a Smalltalk object will be declared

public in the resulting class file.

4 See [CHIMU] and [STIC] for a more thorough analysis.

Generating Java Class Files from Smalltalk Objects Page 7

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Similar to methods, Java allows all member variables to be declared private, protected, or public.

In Smalltalk, all member variables are visible only to the class and its subclasses. Thus member

variables in all generated classes will be declared protected.

2.2.3 Dynamic Binding, Polymorphism, and Types

In both Smalltalk and Java, method lookup is performed symbolically, at run-time. In languages

that are strictly compiled (e.g. C++) methods are invoked via memory offsets, which are

determined at compile-time. Dynamic binding, although slower has the advantage of permitting

some objects to be replaced without recompiling the entire system. It would appear that there is

no issue. However in a strict sense, Java is not entirely dynamically bound. Section 2.4 explains

the somewhat subtle differences, as well as the chosen solution.

2.2.4 Inheritance

In Smalltalk, the methods of a superclass (on both the instance and the class sides) can be invoked

using the special object super. Java uses the super keyword to invoke a superclass’ instance

methods, but there is no way to directly reference a superclass’ static methods, short of specifying

the superclass itself; i.e., Java has no concept of inheritance on the static side. As described in

section 2.6, the solution is to avoid using the Java static side.

Smalltalk implicitly provides access to a superclass’ member variables; i.e., a superclass’ instance

and class variables can be accessed via a direct reference, no special keywords are required. The

Java byte code requires the class where a member variable is defined to be supplied when a

variable is referenced. Smalltalk ensures that subclasses do not reuse their parent’s member

variable names so given any instance variable name, we can find the defining class by examining

the inheritance hierarchy.

Generating Java Class Files from Smalltalk Objects Page 8

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.2.5 Base Types

Smalltalk has several base types or literals, which are the ultimate contents of any memory

location. Each of these types is represented by a specially written Java class. Table 2 lists these

base classes and their corresponding Java literal class. Every instance of a base type is

represented by a new instance of its corresponding literal class.

Smalltalk Base Type Java Literal Class

String visualworks.literals.String

Symbol visualworks.literals.Symbol

Character visualworks.literals.Character

Integer visualworks.literals.Integer

Array visualworks.literals.Array

Float visualworks.literals.Float

Double visualworks.literals.Double

FixedPoint visualworks.literals.FixedPoint

Boolean visualworks.literals.Boolean (abstract)

True visualworks.literals.True

False visualworks.literals.False

Nil visualworks.literals.UndefinedObject

TABLE 2: Correspondance between Smalltalk base types and the Java classes that are used in the generated
system.

In most cases, the Java literal class just wraps one of the primitive Java type (e.g., int, char, etc).

Literals are represented with Java classes so that the Smalltalk interface can be made available to

the generated classes (i.e., visualworks.literals.String implements the interface of Smalltalk’s

String class). These classes are compiled from Java source, the tool simply copies the class files

to the target directory.

Generating Java Class Files from Smalltalk Objects Page 9

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.2.6 The Smalltalk #perform: Method

Smalltalk has the equivalent of function pointers with it’s #perform: method. This method allows

a selector to be built at runtime. We can implement this method in our generated classes as

shown in the following Java pseudo-code:

public Object perform_(visualworks.literals.Symbol sym) {
if(sel == #method1)

return this.method1();
else if(sel == #method2)

return this.method2();
. . .

}

2.2.7 Method Selector Mapping

A multi-part Smalltalk selector, say #selectorArg1: arg2:, must be mapped to a single string for

Java. Additionally, Java does not allow colons in its selectors, so these must be replaced with

underscores so we get selectorArg1_arg2_(…). The arguments retain their order when put into

the argument list.

Smalltalk allows some operators (e.g. @, -, and +) to be used as method selectors, while Java

does not. In order to translate these operators to Java, they are replaced with a string, as shown in

Table 3.

Smalltalk Operator Java Selector String Smalltalk Operator Java Selector String

+ _plus < _lessThan

- _hyphen > _greaterThan

* _star <= _lessThanEqual

% _percent >= _greaterThanEqual

/ _foreSlash = _equal

// _doubleForeSlash == _doubleEqual

\\ _doubleBackSlash ~= _tildeEqual

Generating Java Class Files from Smalltalk Objects Page 10

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

@ _at & _ampersand

** _doubleStart | _pipe

TABLE 3: Mappings for translating Smalltalk operators to Java selector strings.

2.2.8 Smalltalk Primitives

Smalltalk methods are able to access primitives. These are essentially Smalltalk bytecodes that

are visible at the application level. It is a straightforward task to catalogue the semantic meaning

of each primitive, generate a snippet of Java bytecode to perform the same task, and then replace

the primitive reference with the Java byte code when the Java class is generated. Due to the large

number of primitives, this work is outside the scope of this project.

Generating Java Class Files from Smalltalk Objects Page 11

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.3 Java Class Files

This section introduces the class file concept and gives a brief description of how Smalltalk

objects are translated. The languages are essentially compatible, in that both are based on objects

which are composed of member variables and methods.

2.3.1 Namespaces

One area where Smalltalk and Java differ is namespaces. All Smalltalk classes are defined in a

single namespace. Java uses packages to allow multiple namespaces. By putting all generated

classes into the same package (we chose the name visualworks) we guarantee that the proper

classes can be found and that there will be no naming conflicts with existing Java classes.

2.3.2 Object and Inheritance

In the generated class files, the Smalltalk inheritance hierarchy ties into the Java one directly

below java.lang.Object. As illustrated in Figure 2, when visualworks.Object is generated, it

inherits from java.lang.Object and the rest of the generated classes are derived from

visualworks.Object in the same way as the original Smalltalk classes.

 java.lang.Object

 visualworks.Object

all other generated classes

FIGURE 2: Inheritance hierarchy for generated classes, showing where it ties into the Java hierarchy.

Generating Java Class Files from Smalltalk Objects Page 12

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.3.3 Class Files

Java classes are represented with class files, with one class file for every Java class.5

Thus the result of running the tool on a Smalltalk system is a directory containing a collection of

class files. The intent is for the generated classes to use the Java byte codes as much as possible.

However, as described in the following sections this is not always possible. In some instances, it

is necessary to enhance the Java VM using a few custom Java classes. These custom classes are

included in the sub-packages of the base visualworks package but are pre-compiled, the tool

simply copies them to the target directory.

2.3.4 Graphical Interfaces

The VisualWorks system creates graphical interfaces (GUI’s) using component specifications and

builders6. By creating component builders in Java, it would be possible to read the specs (once

they have been translated from the Smalltalk source) and build the appropriate interface using

Java components.7

GUI issues lie outside the scope of this project, so the Java builder has not been created, but it is

interesting to briefly examine this issue. The GUIBuilders read the specifications and create the

proper components. If Java files were created for each component (this would likely have to be

done manually, since they must use the proper AWT classes) then the builders themselves could

be translated from the Smalltalk source using the proposed tool. This is explored in more detail

in section 4.1.1.

5 While it is possible to define multiple classes in the same class file, only one of them can be declared public. All
Smalltalk classes are public.
6 This is the Builder pattern of [GAMMA 94] p. 97.
7 Applied Reasoning [APPLIED] uses a variation of this technique to create a system where the Smalltalk code resides
on the server and a Java interface is built on the client. The client generates Java events which are sent (via CORBA)
to the server where all processing is performed.

Generating Java Class Files from Smalltalk Objects Page 13

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.4 Types

Java is a strictly typed language while Smalltalk is entirely untyped. This means that when a

variable or method argument (i.e., a parameter) is translated from Smalltalk to Java, some type

must be inferred. Some projects8 have had some success doing this in a rigorous fashion, but we

choose the simple solution of declaring everything as visualworks.Object, and letting the

polymorphic abilities of the Java VM sort it out. The idea is that given an instance and a selector,

the VM will find the correct code (from the instance’s inheritance hierarchy).

If Java were entirely dynamically bound, this solution would be ideal, however in a strict sense

this is not the case. When a Java method is invoked, both the classname and the method name

must be supplied. The method table of the given class is examined (at runtime) to find the offset

of the method (in terms of its index in the method table). The corresponding instance then

invokes the code pointed to by the index. The method table is a collection of code pointers,

where each entry corresponds to some symbolic method name. The method table is built by the

VM when a class is loaded. Figure 3 illustrates this concept showing how it relates to

inheritance.

8 For example, [ORISA] performs an analysis of the code to hypothesize about types. They report being able to
automatically make a type determination in most cases. The small remainder which cannot be decided, are brought to
the user’s attention to be manually defined.

Generating Java Class Files from Smalltalk Objects Page 14

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

 ParentClass

 SubClass

 method1()

 method2() public void method2() {
visualworks.Object var1;

public void method1() {
visualworks.Object var1;

 method1()

 method2()

public void method3() {
visualworks.Object var3;

public void method2() {
visualworks.Object var2;

 method3()

ParentClass
Method Table

Code CodeSubClass
Method Table

Class
Hierarchy

FIGURE 3: Diagram showing how method tables are inherited. Even though SubClass doesn’t implement
method1(), it includes an entry in its table. This is not drawn to scale in terms of code locations,
etc. it is just an abstract diagram used to illustrate the concept.

The following Java code shows how the method table in Figure 3 would be used.

ParentClass inst = new SubClass();
inst.method1(); // line A - to be referenced below
inst.method2(); // line B - to be referenced below
inst.method3(); // line C - this line will fail

From the compiler’s viewpoint, inst is of type ParentClass, so it will use that as the class for all

method invocations. Line A for example will compile to the following Java byte code:

invokevirtual visualworks/ParentClass/method1()V

Notice that ParentClasses’ method table is used to determine the method index. Line A will find

that the required method is the first in the table, so inst will invoke the code pointed to by the first

entry of its method table; i.e., the first entry in the SubClass method table, which in this case is

the same as that pointed to by ParentClass. In line B the method table of ParentClass will be

consulted to determine that the required method is second in the table. When the code pointer is

retrieved from the method table of inst, it will point to the new code since SubClass has

overridden the method. Thus it should be clear that even though method3() is implemented by

Generating Java Class Files from Smalltalk Objects Page 15

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

SubClass, it cannot be found, since the bytecode refers to the table for ParentClass. The normal

Java solution is to use typecasting as in:

((SubClass)inst).method3();

This is not a sufficient solution in our case, since it reintroduces the original problem of deciding

on a type (in this case for the typecast).

The chosen solution is to guarantee that all selectors can be found in ParentClasses’ method table.

We can achieve this by generating visualworks.Object such that it implements every selector that

is sent in the generated code. So when we translate a collection of Smalltalk objects, we generate

a collection of all method selectors. The final step of the translation process is to build

visualworks.Object such that it contains a method body for every selector. A class inherits its

parent’s method table so all method tables will have an entry for every selector. In the above

example, ParentClass would have inherited an index for method3() from Object, so the sample

code would evaluate correctly since its own entry for that index is the correct one. This also

implies that the code in the methods generated in Object are never used, the methods are just

placeholders in the method tables. However, for safety reasons we have generated code that

throws an exception (as discussed in the next section).

2.4.1 DoesNotUnderstand Exception

The default Smalltalk behaviour when a method body is not found is to raise a DoesNotUnder-

stand signal. By adding code to throw a similar Java exception into the method bodies, we can

emulate this behaviour in our generated code. The methods in Object will only be evaluated if

the subclass does not implement the method, in other words, when the selector is not understood

by the instance.

Generating Java Class Files from Smalltalk Objects Page 16

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.4.2 Summary

This solution is obviously less than optimal since it builds an Object class that is tailored to a

specific set of class files. More importantly, it wastes a lot of memory, since every method table

in the VM will contain an entry for every selector in the system. Despite of these drawbacks, this

solution has been chose for its simplicity and the way it is able to emulate Smalltalk’s behaviour.

Generating Java Class Files from Smalltalk Objects Page 17

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.5 Blocks

2.5.1 Introduction

A smalltalk block is an instance of an object (BlockClosure in VisualWorks) containing code

which can be evaluated on demand, essentially a first class function. The Java VM does not

support first class functions, so this behaviour must be emulated. This means that structures must

be defined which permit the following behaviour:

• evaluate a section of code on demand

• pass a section of code between methods

• modify variables defined outside of a block (but within the scope that defines the

block)

• cause a block’s defining context to terminate

Section 2.5.2 contains a high-level description of the solution. Section 2.5.3 describes the

evaluation of blocks. Section 2.5.4 discusses variable modification. Section 2.5.5 presents the

details of how the defining context can be terminated. Section 2.5.6 concludes with a summary

of the chosen solution.

2.5.2 Overview of Solution

This section proposes that the addition of a few Java classes is enough to provide all of the

functionality of Smalltalk blocks.

As illustrated in figure 4, these base classes are essentially primitives that will be used by the

generated classes. These base classes are used by the generated code, they are never directly

referenced by the user (in this case the user is the Smalltalk programmer).

Generating Java Class Files from Smalltalk Objects Page 18

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

 Generated Classes

 Base Classes

 Java VM

FIGURE 4: Diagram of relationship between class types in the resulting package. The base classes enhance
some, but not all of the functionality of the basic Java VM.

For performance, the size of the base class set should be kept as small as possible. This

restriction differentiates this project from others that attempt to implement a full Smalltalk VM on

top of the Java VM,9 and should yield much better performance.

2.5.3 Block Evaluation

In Java, all code evaluation is triggered via a message send. Thus when a class file is generated,

we also generate a special blocks method. The body of this method contains the bodies of all

blocks defined within the class. Each block is assigned a unique integer label. A switch

statement is used to separate the block bodies within the special blocks method. During the

generation phase, the label of each block is tracked, so that block evaluation becomes a simple

matter of calling the special blocks method with the appropriate label as an argument.

As an example, consider translating the following Smalltalk code to equivalent Java code.10 This

example obviously lacks details, but instead illustrates the concept.

aMethod

9 See [STX] for example.
10 The generator does not actually create source Java code; this example merely illustrates the underlying structure of
the byte code that is generated.

Generating Java Class Files from Smalltalk Objects Page 19

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

[true] value.
[false] value

void aMethod() {
self _blocks(0);
self _blocks(1);

}

void _blocks(int i) {
switch(i) {

CASE 0: return true; break;
CASE 1: return false; break;

}
}

The first step in automating this process is to create an object to wrap the message sends to the

special blocks method. We define a class ContextBlock.java as follows (some details have been

omitted for clarity).

public class ContextBlock extends visualworks.Object {
int blockIndex;
visualworks.Object instance;

public visualworks.Object value() {
return instance._blocks(blockIndex);

}
}

ContextBlock.java also defines methods for the Smalltalk selectors #value:, #value:value:,

#value:value:value:, and #valueWithArguments:. Passing arguments to a block is discussed in

the next sub-section.

To complete this example, the Java version of #aMethod now becomes:

void aMethod() {
(new ContextBlock(this, 0)).value();
(new ContextBlock(this, 1)).value();

}

2.5.3.1 Block Arguments

Another detail is the ability to pass arguments to the blocks. We add a parameter to the special

blocks method, which is just an array of objects that will be accessed by only those block bodies

Generating Java Class Files from Smalltalk Objects Page 20

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

that expect arguments (this is ensured when the Smalltalk source code is written). In the body of

#value, this will be an empty array, in #value: it will be an array with one element, etc.

2.5.3.2 Summary

Thus when the generator encounters a block, three things happen:

• the block is assigned a unique integer label

• the body of the block is added to the class’ special blocks method

• Java bytecode is generated to create a new instance of ContextBlock using the

block’s integer label

Since instances of ContextBlock.java are ordinary Java objects, they can be passed between

methods and classes in the same way as the Smalltalk counterpart.

2.5.4 Variable Accessing and Modification

The scope of a block is nested within that of the context where the block is defined. This means

that a block is able to access variables that have been declared outside of the block but within the

defining method. Any changes to variables performed within the block should be visible outside

the block when the block terminates. For example, the following code should return the string

“inside the block”, a behaviour that is consistent with the simple scoping rules of Smalltalk and

Java (even C supports this form of scoping).

| local |
local := ’before’.
[local := ’inside the block’] value.
^local

Unfortunately, providing this behaviour in the context of blocks is not trivial. Since, as described

in section 2.5.3, the body of a block is evaluated in a method other than the defining one, the

locals will not be visible in the special blocks method. The solution is to bypass the normal Java

Generating Java Class Files from Smalltalk Objects Page 21

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

scoping mechanism and pass our own table of variable bindings. By using this table for all

variables (even those local to the block), we can easily handle blocks defined within other blocks.

The class Scope.java has been defined to implement this binding table. Instances of Scope.java

exist as a linked list, where each cell contains the variables defined by a single context, as shown

in figure 5. The table is stored as an array, so variable references are nothing more than offsets

into this array. The indices of a child start from the largest value of its parent.

 BINDINGS: { null }

 PARENT:

 BINDINGS: { null, ’before’ }

 PARENT: null
| local temp |

temp := ’before’.
[| nested | local := ’inside the block’] value.

^local

FIGURE 5: Example of how scopes can be nested, showing both the Smalltalk code and the corresponding
Java structure. The bindings array is declared as type visualworks.Object, the contained string
is actually of type visualworks.literals.String, which inherits from visualworks.Object.

The advantage of this approach is that it allows a context’s variables to go out of scope without

overhead. A block can modify its variables, as well as its parent’s variables. The block’s

instance of Scope.java is destroyed when the block terminates, but the parent still has access to its

own scope.

So in addition to a code pointer, a ContextBlock stores an instance of Scope.java. The value of

scope is set when the block is defined, so that wherever the block is evaluated, the correct scope

will be accessible. Also, since the block stores a reference to the scope (vs. a copy), all variable

modifications will be visible when the block is evaluated.

Generating Java Class Files from Smalltalk Objects Page 22

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Thus the final definition for the special blocks method is as follows. Notice that the third

argument of the special blocks method is an array of block arguments (as described in section

2.5.3.1).

// This method is received by the owner of the block.
public visualworks.Object _blocks(

int, // block index
Scope, // context’s scope
visualworks.Object []); // arguments to block

Also ContextBlock.java must be refined to:

public class ContextBlock extends visualworks.Object {
int blockIndex;
Scope scope;
visualworks.Object instance;

// . . . some details omitted . . .

// The #value method has no arguments so an empty array is used
as a

// place holder.
public visualworks.Object value() {

visualworks.Object blockArgs[] = new visualworks.Object[0];

return instance._blocks(blockIndex, scope, blockArgs);
}

// The #value: method has one argument, so a single element
array is

// used.
public visualworks.Object value_(visualworks.Object arg1) {

visualworks.Object blockArgs[] = new visualworks.Object[1];
blockArgs[0] = arg1;

return instance._blocks(blockIndex, scope, blockArgs);
}

// similar methods for all other value selectors
}

2.5.4.1 Critique of Scope.java

Using this technique, all methods generated from a smalltalk object bypass the normal Java

scoping mechanism, in favour of this custom scoping technique. This introduces a performance

penalty, since all variables are now accessed at a higher level. However, performance is

acceptable if the project goal is to be able to create demos of working Smalltalk systems. A demo

(which is likely being accessed from some web page) is allowed to perform sub-optimally.

Generating Java Class Files from Smalltalk Objects Page 23

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

If the performance penalty can be overlooked, then this is a very powerful technique that can be

used in a variety of situations. The key is that we are not generating source code so the emphasis

can be on functionality instead of elegance (the execution of the compiled class files is not visible

to the user).

2.5.5 Returning from Blocks

2.5.5.1 Introduction

A block without a carat (^) implicitly returns the result of the last computed value (i.e., the final

line). A block with a carat explicitly forces the current value to be returned from the method that

defined the block (i.e., a carat causes the block, as well as the method that defined the block, to

terminate immediately).

This implies that a block can only use an explicit return if its defining method is still on the

execution stack. For example, the following Smalltalk code will cause a ContextCannotReturn

signal to be raised.

setBlock
instanceVar := [^’block stored in an instance variable’]

useBlock
self setBlock.
instanceVar value

When the block is evaluated (in #useBlock), it will attempt an explicit return from the context of

#setBlock. Since #setBlock has already completed, its context has been destroyed -- an error

signal is raised.11

11 In this case, an implicit return would execute without error.

Generating Java Class Files from Smalltalk Objects Page 24

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.5.5.2 Implementation of Implicit Returns

Implicit returns are essentially the default case. A normal Java method return from the special

blocks method will return execution to the context that evaluated the block. Notice that this holds

even if a block is being evaluated from within another block.

2.5.5.3 Implementation of Explicit Returns

Explicit returns require the ability to send a message up the evaluation stack to the context of the

specific method that defined the block, we do this with a Java exception signal. When a context

receives this signal, it should resume execution (terminating all contexts beneath it) and

immediately return the contents of the signal. There may be an arbitrary number of contexts

between the definition and the evaluation of a block, so the signal must be more than a simple

return.

The Java exception mechanism is ideally suited for this. The intent of exceptions is to mark a

section of code and then deal with any errors that occur before the end of the section. The

following Java code illustrates this process.

try { this.wrapperMethod(); }
catch(Exception e) { return "an error occurred"; }

void wrapperMethod() throws Exception {
this.innerMethod();

}

void innerMethod() throws Exception {
if(badCondition)

throw new Exception();
}

When the exception is thrown, it will send a signal directly to the catch block, bypassing the

wrapperMethod. Exceptions that are not caught in code are eventually trapped by the Java VM.

Generating Java Class Files from Smalltalk Objects Page 25

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Java contains definitions for about fifty types of exceptions.12 We define a new class to represent

the explicit return signal. By subclassing from RuntimeException, we obviate the need for the

throws clause in the method definitions.

The solution then is to put a try block around the body of every method that defines a block. The

corresponding catch block will extract and immediately return the value stored in the exception

object.

If the context of the method that defined the block is no longer active, then the exception will not

be caught in code (since the try block will already have completed normally) but rather by the

Java VM. Thus by calling the exception ContextCannotReturn, we mimic the behaviour of

Smalltalk.

A final detail to examine is dealing with nested blocks. The following Smalltalk code shows an

example of this:

nestedBlocks
[[^ ’inside inner block’] value.

’inside outer block’] value
^ ’after blocks’

The exception should only be caught by the defining method, never by the special blocks method

(since that method just represents the body of some other block). Therefore a try is placed around

the body of all methods that define blocks, except for in the special blocks method.

12 See [FLAN96] pp. 349-364.

Generating Java Class Files from Smalltalk Objects Page 26

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.5.6 Summary

We have a technique for converting arbitrary Smalltalk blocks to fully functional Java

counterparts. The solution requires the following three base classes:

• ContextBlock.java

• Scope.java

• ContextCannotReturn.java (to signal explicit returns)

The solution also requires a special blocks method to be created for every class file that is

generated. This allows a block to be evaluated with an ordinary Java method.

Generating Java Class Files from Smalltalk Objects Page 27

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.6 Smalltalk Class vs. Java Static

Although similar, the behaviour of the static side of a Java class file is not precisely the same as

the class side of a Smalltalk object. Table 4 highlights the differences and similarities.

Smalltalk Java

class variables visible to all instances static variables visible to all instances

class can be passed as an object class cannot be passed as an object

class side has access to self static side does not have access to this

class side inherits from superclass static side does not inherit from superclass

TABLE 4: Comparison of Smalltalk and Java language features in terms of the class/static side.

As in section 2.5.4, where we bypass the Java scoping mechanism, we reconcile this

Smalltalk/Java discrepancy by bypassing the Java static side. Every time a class file is generated,

we also generate a special metaclass. The class side of every object is represented by a single

instance of this metaclass. That is, a class method in ClassA becomes an instance method in

MetaClassA.class.

The inheritance hierarchy of the metaclasses is the same as that of the classes. Those familiar

with Smalltalk will recognize this as essentially the same way that Smalltalk handles the issue.

The difference is that Smalltalk metaclasses are all instances of the same class, while we generate

a new class file for each. Smalltalk classes are represented at a much higher level, while we want

to use the basic Java resources as much as possible.

To ensure that there is exactly one instance of each metaclass, and that the instance is globally

visible, we maintain a single, global, hashtable. Again, this is the same way that Smalltalk deals

with the issue, and for consistency, this table is called Smalltalk. Each entry in the table is keyed

Generating Java Class Files from Smalltalk Objects Page 28

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

by a string containing the name of the class. For example, an instance of MetaClassA is accessed

with the key "ClassA".

2.6.1 The Smalltalk System Dictionary13

The two requirements of the system dictionary are that it be globally accessible and that there be

only one instance. Both of these aims are met by creating a class called Smalltalk, with a hash

table on its static side.

The first time that a Java class is referenced, the VM loads it from its class file (in the case of

Java, this may involve reading over the internet). From this point, the VM always refers to its

own local version of the class (permitting static variables, etc). There is an optional section of

code that is evaluated one time (right after the class has been loaded). This code can be thought

of as a class constructor instead of the more common instance constructor. For all generated

classes, this method contains code to create an instance of the metaclass and put that instance into

the system dictionary, with the class name as a key.

Since each class loads only its own metaclass, the section can be hardcoded and can therefore run

very efficiently, making this the preferred technique. However, it requires the class to be

accessed before the metaclass; i.e., a class must be referenced in order to make its metaclass

accessible. In some cases, the metaclass may be accessed before the class, we deal with this by

modifying the system dictionary accessor. If a non-existent key is accessed, the value of that key

(i.e. the class name) is used to create and store the proper metaclass. The following code (taken

from Smalltalk.java) illustrates this process.

public static visualworks.Object at_(visualworks.Object key) {

13 Hereafter, the Smalltalk system dictionary will be referred to as just the system dictionary to avoid confusion with
the Smalltalk language.

Generating Java Class Files from Smalltalk Objects Page 29

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

if(!systemDictionary.contains(key))
systemDictionary.add(

key,
Class.forName("Meta" + key.toString()).newInstance());

return systemDictionary.at(key);
}

The real code adds some error handling to ensure that the metaclass definition is found, that there

are no errors building the instance, etc., but this illustrates the basic idea.

To be clear, the hope is that the custom code will be used as much as possible, but if the

metaclass is accessed before the class has been loaded, the general code in the accessor ensures

that the metaclass is retrieved.

Smalltalk also uses the system dictionary for storing global variables (all Smalltalk classes are in

fact stored in a global variable). Smalltalk.java can be used in the same way. However undefined

globals (because of the above) are interpreted as classes. In general this is not a problem, since

the source code is from a working Smalltalk application.

2.6.2 Summary

Every Smalltalk class, say ClassA, which is compiled to Java byte code creates two class files.

One, ClassA.class, implements the instance side of the Smalltalk object. The other,

MetaClassA.class, implements the class side of the Smalltalk object. A new base class,

Smalltalk.java is introduced to manage the instances of the metaclasses. Smalltalk.java is also

used to store all global variable bindings.

Since a Smalltalk class is represented by an instance of a Java class, it can be passed around in the

same way as any other Java object. This behaviour is demanded by the Smalltalk code, and this

solution is key to being able to translate Smalltalk objects to Java class files.

Generating Java Class Files from Smalltalk Objects Page 30

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

2.7 Inheritance

Smalltalk doesn’t distinguish between the class and the instance side in terms of inheritance.

Both sides are able to directly access their parent’s member variables, and both sides can invoke

an inherited method using the special object super. Java has a similar procedure for invoking

inherited methods on the instance side.14 Member variables can be directly accessed and super

can be used to invoke the inherited methods. However, at the bytecode level, the inherited

classname must be supplied. Figure 6 shows an example inheritance hierarchy. A method is

defined then overridden in a derived class.

 ParentClass

 MiddleClass

 SubClass

method1()

method1()

FIGURE 6: An example inheritance hierarchy which will be used to describe method and variable
inheritance. ParentClass and SubClass provide implementations of method1(), but MiddleClass
does not.

A Smalltalk method in SubClass could invoke ParentClass>>method1() using the special object

super, as in:

super method1.

However the Java byte code requires that the proper classname be provided. Thus the bytecode:

invokespecial MiddleClass.method1()

would not work. The following should be used instead:

Generating Java Class Files from Smalltalk Objects Page 31

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

invokespecial ParentClass.method1()

Since we translate classes not individually, but in groups this is not really a problem. Whenever a

reference to the special object super is encountered in the Smalltalk code, we just look up the

inheritance hierarchy to find the class that implements the selector. If the selector is not found,

then Object is used as the implementor. In the final system, Object will implement all selectors

using the ’DoesNotUnderstand’ method body as described in section 2.4.1.

Member variables require a similar scheme, since at the bytecode level, the class must also be

specified. The difference is that Smalltalk doesn’t use the super object when retrieving an

inherited member variable. The solution is to walk the inheritance hierarchy every time we

generate code for member variable access and modification. Again, since the source is a working

Smalltalk application, it has compiled correctly and therefore all member variables must be

properly defined at an appropriate level in the tree.

14 The static side is not applicable since, as described in section 2.6, it is not used in the generated class files.

Generating Java Class Files from Smalltalk Objects Page 32

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

3. Results

The techniques outlined in section 2 have been used to implement a tool capable of generating

Java class files from Smalltalk objects. This tool performs the code generation but not the

parsing. An existing parser was reused, so the tool starts not from the Smalltalk syntax, but from

a parse tree. The tool has successfully handled the trivial test cases described in Appendix A.

The intent of this section is to describe the translation of a more complex application.

3.1 Smalltalk Othello

3.1.1 Overview

The sample application is a two-player game of Othello15, where both players use the same

computer; i.e., there is no network communication. This application was chosen since it is

moderately complex (the fileout of Smalltalk code is on the order of 100Kb). In addition, all user

interaction is through the transcript, so we can ignore the more complex UI issues.

As shown in Figure 7, the application is comprised of six classes (which together define over 100

methods). Other than the absence of a true GUI, the application was written to take full

advantage of Smalltalk’s functionality. Blocks are used extensively, as in any other Smalltalk

application. Additionally base Smalltalk classes such as OrderedCollection, Dictionary, and Set

are used.

15 See [ORUL] for the rules to the game of Othello.

Generating Java Class Files from Smalltalk Objects Page 33

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

 Game

 OthelloTextGame

 OthelloBoard

 OthelloBoardCoordinate

 OthelloBoardModel

 OthelloRules

 Object

FIGURE 7: Architecture of the sample Smalltalk application.

3.1.2 The Translation Process

Since (as described in section 2.2.8) the tool is not able to translate primitive methods, it cannot

translate the base Smalltalk classes such as OrderedCollection and Set. Instead, these classes

were written in the Java language, and then compiled with a standard Java compiler. These

custom created classes simply wrap their Java equivalents with the interface expected by the

Smalltalk code. For example, visualworks.OrderedCollection.java stores an instance of

java.util.Vector (Java’s collection class) and contains a method definitions such as:

visualworks.Object add_(visualworks.Object);
visualworks.Object at_put_(visualworks.Object,
visualworks.Object);
visualworks.Object removeFirst();
. . .

Generating Java Class Files from Smalltalk Objects Page 34

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

These manually created classes include appropriate metaclasses to implement the class-side of the

Smalltalk objects. For example, visualworks.__MetaOrderedCollection.java contains the

following method definitions:

visualworks.Object with_(visualworks.Object);
visualworks.Object with_with_(visualworks.Object,
visualworks.Object);
. . .

Once the Smalltalk base classes are compiled, and the tool translates the Smalltalk code to Java,

the UI has to be considered. We require a simple Transcript window that responds to #show:,

#cr, and #tab. In addition the transcript has to be able to accept a highlighted line of text as input

(the Smalltalk procedure for input is to highlight a snippet of code and "do it"). A Smalltalk

transcript is able to execute any well formed Smalltalk syntax, our Java transcript is much more

limited and in fact, only recognizes the two commands expected in the game:

• OthelloGame move: #d316

• OthelloGame newGame.

The Transcript itself has been implemented with two classes, as shown in Figure 8.

Web Browser

OthelloApplet

Transcript

Generated Application

FIGURE 8: An illustration of the translated architecture, showing the interactions between the two classes
forming the Transcript window.

16 The argument can be anything in the range a1 to h8.

Generating Java Class Files from Smalltalk Objects Page 35

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

OthelloApplet is a pure Java class which inherits from java.applet.Applet, and as such can be

embedded in any context appropriate to a Java applet (e.g., a web browser). It contains, among

others the following method definitions:

public void show(java.lang.String);
public void cr();
public void tab();

While OthelloApplet is responsible all interaction with the web browser, Transcript deals with the

code translated from Smalltalk. The three methods cited above simply invoke their counterparts

in the instance of Transcript (which is stored by OthelloApplet). When a user highlights some

text and clicks the "do it" button, OthelloApplet invokes the following method in Transcript:

public void evaluate(java.lang.String);

This method interprets the string (looking for one of the two commands), and invokes the proper

method in the generated code.

Hence we have an application that can run on any Java VM (including those embedded in

browsers) but was actually developed in Smalltalk. Figure 9 shows the original Smalltalk view as

well as the view of the translated application.17

17 This application is available at [HONSUP].

Generating Java Class Files from Smalltalk Objects Page 36

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

FIGURE 9: Views of both the original Smalltalk Transcript window, and the application as an applet within
a web browser.

Generating Java Class Files from Smalltalk Objects Page 37

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

4. Conclusion

This paper has proposed a method of translating Smalltalk applications into a form which can be

executed on a Java VM. Smalltalk’s extensive use of blocks, its non-typed nature, and the

differences between Java’s instance and static sides make such translation non-trivial indeed. As

a test of these techniques, such a tool has been implemented and tested using a moderately

complex applications.

Despite the successful translation of the sample application, the tool is still in the prototype

stages. It is unable to deal with UI other than the basic text-based functionality provided by the

transcript (and even this requires a small Java header to be manually implemented and compiled).

Also, the tool is unable to translate any classes that use primitive methods. The following

sections briefly outline proposed solutions.

4.1 Future Work

4.1.1 UI Builder

Smalltalk provides a two-step process to displaying a user interface. The interface is described in

abstract terms, using interface specifications. These specifications describe the windows, scroll

bars, buttons, etc that make up the interface. This specification is passed to a UIBuilder which

builds the interface using components appropriate to the current platform. Smalltalk has a set of

classes to invoke interface components on a Unix (motif) system, another set for a PC (windows),

another for a Mac, etc. By implementing a set of these classes that are able to display the

appropriate Java components, we could provide support for general UI’s. This implementation

would consist of nothing more than wrappers for AWT classes.

Generating Java Class Files from Smalltalk Objects Page 38

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

The UIBuilder itself is written in Smalltalk, and could therefore be converted to Java using the

tool itself. Likewise, the specifications are extremely simple Smalltalk objects (in most cases,

nothing more than an Array) and would be trivial to translate. In this manner it should be

possible to provide support for general interfaces.

4.1.2 Smalltalk Base Classes

The ability to translate Smalltalk’s base classes means that the tool must be able to deal with

primitive methods. Once all primitives have been documented, it would be possible to create

Java byte code strings which perform the same task. From this point it would be a trivial task to

extend the tool to insert these byte code snippets every time the corresponding primitive is

encountered.

This would allow the tool to translate any of the existing Smalltalk classes. A possible use of this

would be to translate the Smalltalk collection hierarchy to make it available as a class library for

tradition Java development.

Generating Java Class Files from Smalltalk Objects Page 39

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

5. References

[BERG97] Berg Cliff, “How Do I Create a Java Bean”, Dr. Dobb’s Journal, September
1997.

[FLAN96] Flanagan David, Java in a Nutshell, O’Reilly & Associates Inc., 1996.

[GAMMA94] Gamma, et. al, Design Patterns - Elements of Reusable Object-Oriented
Software, Addison Wesley Longman Inc., 1994.

[HIST] Bergin Thomas & Gibson Richard, The History of Programming Languages,
Addison Wesley Pub Co., 1996.

[LIND97] Lindholm Tim & Yellin Frank, The Java Virtual Machine Specification, Addison
Wesley, 1997.

[MEYE97] Meyer Jon & Downing Troy, Java Virtual Machine, O’Reilly & Associates Inc.,
1997.

5.1 Related Web Pages

[APPLIED] Applied Reasoning: A way of creating a Java front end for a Smalltalk server:
http://www.AppliedReasoning.com/cbframe.htm.

[CHIMU] A syntax-level comparison of Java and Smalltalk:
http://www.chimu.com/publications/JavaSmalltalkSyntax.html.

[HONSUP] A web page with data relevant to this paper (including links to other sites listed
in this section):
http://www.cyberus.com/~eidsness/jasper.

[ORISA] ORISA: A tool which forms hypotheses about variable types:
http://www.softwarezentrum.de/orisa/Framed.Home.E.html.

[ORUL] The rules to the game of Othello:
http://www.armory.com/~iioa/othguide/faq/othellorules.html.

[STIC] A language-level comparison of Java and Smalltalk:
http://www.stic.org/Research/IDC97/stic.htm.

[STX] A Java VM implemented in Smalltalk (link may be dead)
http://home.t-online.de/home/exept/stja97_e.html.

[USENET] A thread from comp.lang.smalltalk discussing the various way of converting
from Smalltalk to Java. This discussion focuses on a source code level
translation:
<extremely long URL, use the link in [HONSUP] instead>

Generating Java Class Files from Smalltalk Objects Page 40

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

6. Appendix A: Test Plan

6.1 Introduction

This document describes a plan to test the ST-JAVA project. Java class files have been generated

from several Smalltalk objects. These class files are described in section 2 and are the base of all

test cases. Section 3 presents a table summarizing all test cases, and their current status. Section 4

describes each test case in more detail. For each case, there is a copy of the smalltalk source for

applicable methods, the Java source (i.e. the test case driver), and the expected result. This

document is intended to be used in concert with the test cases.

6.2 Overview

Several Java class files have been generated from Smalltalk objects. Additionally, a few support

class files have been generated from Java source (e.g. Transcript, Array, etc.) These support

classes are not shown here. See the main document for more information. There are three

smalltalk classes; VerySimpleTestParent, VerySimpleTest, and VerySimpleTestChild. Figure

A-1 describes the inheritance hierarchy for the generated class files. The following subsections

show the Smalltalk source for each of the classes.

Generating Java Class Files from Smalltalk Objects Page 41

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

 visualworks.VerySimpleTestParent

 visualworks.VerySimpleTest

 visualworks.VerySimpleTesChild

 visualworks.__MetaObject

 visualworks.Object

 java.lang.Object

 visualworks.__MetaVerySimpleTestParent

 visualworks. __MetaVerySimpleTest

 visualworks. __MetaVerySimpleTesChild

FIGURE A-1: Inheritance hierarchy for the test objects

VerySimpleTestParent

Object subclass: #VerySimpleTestParent
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’ST_Java-Samples’

VerySimpleTest

VerySimpleTestParent subclass: #VerySimpleTest
instanceVariableNames: ’anInstVar ’
classVariableNames: ’AClassVar ’
poolDictionaries: ’’
category: ’ST_Java-Samples’

VerySimpleTestChild

VerySimpleTest subclass: #VerySimpleTestChild
instanceVariableNames: ’’

Generating Java Class Files from Smalltalk Objects Page 42

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

classVariableNames: ’’
poolDictionaries: ’’
category: ’ST_Java-Samples’

6.3 Test Case Status

Index Test Case Title Created On Succeeded On Page #

1 Local Variable Modification/Accessing Feb 6, 1998 Feb 6, 1998 43

2 Basic Instance-side Block Evaluation Feb 6, 1998 Feb 6, 1998 44

3 Instance Variable Modification/Accessing Feb 6, 1998 Feb 6, 1998 43

4 Class Variable Modification/Accessing Feb 6, 1998 Feb 6, 1998 44

5 Basic Class-side Block Evaluation Feb 6, 1998 Feb 6, 1998 44

6 Class-side Messaging with Arguments Feb 6, 1998 Feb 6, 1998 45

7 Evaluating Blocks With Arguments Feb 6, 1998 Feb 6, 1998 45

8 Evaluating Nested Blocks Feb 6, 1998 Feb 6, 1998 46

9 Evaluating a Block Stored in a Local Variable Feb 6, 1998 Feb 6, 1998 46

10 Pass a Block as an Argument Feb 6, 1998 Feb 6, 1998 47

11 Cascaded Messages Feb 6, 1998 Feb 6, 1998 47

12 Instance-side Super Test Feb 6, 1998 Feb 6, 1998 48

13 Class-side Super Test Feb 6, 1998 Feb 6, 1998 50

14 Smalltalk Translated New Feb 6, 1998 Feb 6, 1998 52

15 Messaging a Smalltalk Constructed Object Feb 6, 1998 Feb 6, 1998 52

16 Chaining Message Sends Feb 15, 1998 Feb 15, 1998 52

TABLE A-1: Test case titles with current status.

6.4 Test Case Descriptions

A small java program has been written to drive each test case. All test files can be found in the

TestSuite directory. Each test case is described with three sections. The first lists the smalltalk

source, the second gives the Java driver filename as well as the applicable code. The final section

shows the expected result (this should be displayed on the window from which the test plan was

executed). All test cases should be executed from a system prompt, using the java interpreter.

Generating Java Class Files from Smalltalk Objects Page 43

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

6.4.1 Local Variable Modification/Accessing

Smalltalk Source:

VerySimpleTest>>#valueToOne
| local1 |

local1 := 1.
^local1

Java Driver Program:

Test1.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.valueToOne().toString());

Expected Result:

1

6.4.2 Basic Instance-side Block Evaluation

Smalltalk Source:

VerySimpleTest>>#useBlock
[’VerySimpleTest - inside the block’] value.
^’VerySimpleTest - after the block’

Java Driver Program:

Test2.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.useBlock().toString());

Expected Result:

VerySimpleTest - after the block

6.4.3 Instance Variable Modification/Accessing

Smalltalk Source:

VerySimpleTest>>#setInstVar
anInstVar := ‘an instance variable value’

Generating Java Class Files from Smalltalk Objects Page 44

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

VerySimpleTest>>#getInstVar
^anInstVar

Java Driver Program:

Test3.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
vst.setInstVar()
System.out.println(vst.getInstVar().toString());

Expected Result:

an instance variable value

6.4.4 Class Variable Modification/Accessing

Smalltalk Source:

VerySimpleTest(class)>>#setClassVar
AClassVar := ’a class variable value’

VerySimpleTest(class)>>#getInstVar
^anInstVar

Java Driver Program:

Test4.java:

visualworks.Smalltalk.at_(“VerySimpleTest”).setClassVar();
System.out.println(visualworks.Smalltalk.at_(

“VerySimpleTest”).getInstVar().toString());

Expected Result:

a class variable value

6.4.5 Basic Class-side Block Evaluation

Smalltalk Source:

VerySimpleTest(class)>>#useBlock
[^'VerySimpleTest(class) - inside block'] value.
^'VerySimpleTest(class) - after block'

Generating Java Class Files from Smalltalk Objects Page 45

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Java Driver Program:

Test5.java:

System.out.println(visualworks.Smalltalk.at_(
“VerySimpleTest”).useBlock().toString());

Expected Result:

VerySimpleTest(class) - inside block

6.4.6 Class-side Messaging with Arguments

Smalltalk Source:

VerySimpleTest(class)>>#echoArg: anObject
^anObject

Java Driver Program:

Test6.java:

visualworks.Object result;
result = visualworks.Smalltalk.at_(“VerySimpleTest”).echoArg_(

new visualworks.literals.Integer(10));
System.out.println(result.toString());

Expected Result:

10

6.4.7 Evaluating Blocks with Arguments

Smalltalk Source:

VerySimpleTest>>#useArgBlock
^[:aBlockArg | aBlockArg] valueWithArguments: #(654)

Java Driver Program:

Test7.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.useArgBlock().toString());

Generating Java Class Files from Smalltalk Objects Page 46

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

Expected Result:

654

6.4.8 Evaluating Nested Blocks

Smalltalk Source:

VerySimpleTest>>#nestedBlock
^[[[[^true] value] value] value. false] value

Java Driver Program:

Test8.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.nestedBlock().toString());

Expected Result:

true

6.4.9 Evaluating a Block Stored in a Local Variable

Smalltalk Source:

VerySimpleTest>>#localVarBlock
| aBlock |

aBlock := [:arg | ^arg].
aBlock value: true

Java Driver Program:

Test9.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.localVarBlock().toString());

Expected Result:

true

Generating Java Class Files from Smalltalk Objects Page 47

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

6.4.10 Pass a Block as an Argument

Smalltalk Source:

VerySimpleTest>>#useEvalBlock
self evalBlock: [:arg | ^arg]

VerySimpleTest>>#evalBlock: aBlock
aBlock value: true.
^false

Java Driver Program:

Test10.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.useEvalBlock().toString());

Expected Result:

true

6.4.11 Cascaded Messages

Smalltalk Source:

VerySimpleTest>>#cascadeTest
^self getInstVar;

valueToOne

Java Driver Program:

Test11.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.cascadeTest().toString());

Expected Result:

1

Generating Java Class Files from Smalltalk Objects Page 48

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

6.4.12 Instance-side Super Test

This test is actually four tests rolled into one. It demonstrates that the super class method (and

only the super class method) will be found when needed. The first sub-test case should succeed,

the final three should be unable to find the proper method (and thus throw a DoesNotUnderstand

exception).

Smalltalk Source:

VerySimpleTest>>#instanceParentExistTest
Transcript show: ’VerySimpleTest>>#instanceParentExistTest -

START’; cr.
super instanceParentExistTest.
Transcript show: ’VerySimpleTest>>#instanceParentExistTest -

END’; cr

VerySimpleTest>>#instanceParentAbsentExistClassCurrentTest
Transcript

show:
’VerySimpleTest>>#instanceParentAbsentExistClassCurrentTest

- START’;
cr.

super instanceParentAbsentExistClassCurrentTest.
Transcript

show:
’VerySimpleTest>>#instanceParentAbsentExistClassCurrentTest -
END’;

cr

VerySimpleTest>>#instanceParentAbsentExistClassTest
Transcript show:

’VerySimpleTest>>#instanceParentAbsentExistClassTest
- START’; cr.

super instanceParentAbsentExistClassTest.
Transcript show:

’VerySimpleTest>>#instanceParentAbsentExistClassTest
- END’; cr

VerySimpleTest>>#instanceParentAbsentTest
Transcript show: ’VerySimpleTest>>#instanceParentAbsentTest -

START’; cr.
super instanceParentAbsentTest.
Transcript show: ’VerySimpleTest>>#instanceParentAbsentTest -

END’; cr

VerySimpleTestParent>>#instanceParentExistTest
Transcript show:

’VerySimpleTestParent>>#instanceParentExistTest’; cr

VerySimpleTest(class)>>#instanceParentAbsentExistClassCurrentTest
Transcript show:

’VerySimpleTest(class)>>#instanceParentAbsentExistClassCurrentT
est’; cr

VerySimpleTestParent(class)>>#instanceParentAbsentExistClassTest
Transcript show:

Generating Java Class Files from Smalltalk Objects Page 49

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

’VerySimpleTestParent(class)>>#instanceParentAbsentExistClassTe
st’; cr

Java Driver Program:

Test12.java:

visualworks.Object vst = new visualworks.VerySimpleTest();

vst.instanceParentExistTest();

System.out.println(“”);
try { vst.instanceParentAbsentTest(); }
catch(Throwable t) { System.out.println(t.toString()); }
System.out.println(“”);
try { vst.instanceParentAbsentExistClassTest(); }
catch(Throwable t) { System.out.println(t.toString()); }
System.out.println(“”);
try { vst.instanceParentAbsentExistClassCurrentTest(); }
catch(Throwable t) { System.out.println(t.toString()); }

Expected Result:

VerySimpleTest>>#instanceParentExistTest - START

VerySimpleTestParent>>#instanceParentExistTest

VerySimpleTest>>#instanceParentExistTest - END

VerySimpleTest>>#instanceParentAbsentTest - START

visualworks.DoesNotUnderstand: instanceParentAbsentTest

VerySimpleTest>>#instanceParentAbsentExistClassTest - START

visualworks.DoesNotUnderstand: instanceParentAbsentExistClassTest

VerySimpleTest>>#instanceParentAbsentExistClassCurrentTest - START

visualworks.DoesNotUnderstand: instanceParentAbsentExistClassCurrentTest

Generating Java Class Files from Smalltalk Objects Page 50

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

6.4.13 Class-side Super Test

This test is actually four tests rolled into one. It demonstrates that the superclasses’ method (and

only the superclasses' method) will be found when needed. The first sub-test case should

succeed, the final three should be unable to find the proper method (and thus throw a

DoesNotUnderstand exception).

Smalltalk Source:

VerySimpleTest(class)>>#classParentExistTest
Transcript show: ’VerySimpleTest(class)>>#classParentExistTest

- START’; cr.
super classParentExistTest.
Transcript show: ’VerySimpleTest(class)>>#classParentExistTest

- END’; cr

VerySimpleTest(class)>>#classParentAbsentExistClassCurrentTest
Transcript

show:
’VerySimpleTest(class)>>#classParentAbsentExistInstanceCurrentTest

- START’;
cr.

super classParentAbsentExistInstanceCurrentTest.
Transcript

show:
’VerySimpleTest(class)>>#classParentAbsentExistInstanceCurrentTest

- END’;
cr

VerySimpleTest(class)>>#classParentAbsentExistClassTest
Transcript show:

’VerySimpleTest(class)>>#classParentAbsentExistInstanceTest
- START’; cr.

super classParentAbsentExistInstanceTest.
Transcript show:

’VerySimpleTest(class)>>#classParentAbsentExistInstanceTest
- END’; cr

VerySimpleTest(class)>>#classParentAbsentTest
Transcript show: ’VerySimpleTest(class)>>#classParentAbsentTest

- START’; cr.
super classParentAbsentTest.
Transcript show: ’VerySimpleTest(class)>>#classParentAbsentTest

- END’; cr

VerySimpleTestParent(class)>>#classParentExistTest
Transcript show:

’VerySimpleTestParent(class)>>#classParentExistTest’; cr

VerySimpleTest>>#classParentAbsentExistInstanceCurrentTest
Transcript show:

’VerySimpleTest>>#classParentAbsentExistInstanceCurrentTest’;
cr

Generating Java Class Files from Smalltalk Objects Page 51

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

VerySimpleTestParent>>#classParentAbsentExistInstanceTest
Transcript show:

’VerySimpleTestParent>>#classParentAbsentExistInstanceTest’;
cr

Java Driver Program:

Test13.java:

visualworks.Object vstClass =
visualworks.Smalltalk.at_(“VerySimpleTest”);

vstClass.instanceParentExistTest();

System.out.println(“”);
try { vstClass.instanceParentAbsentTest(); }
catch(Throwable t) { System.out.println(t.toString()); }
System.out.println(“”);
try { vstClass.instanceParentAbsentExistClassTest(); }
catch(Throwable t) { System.out.println(t.toString()); }
System.out.println(“”);
try { vstClass.instanceParentAbsentExistClassCurrentTest(); }
catch(Throwable t) { System.out.println(t.toString()); }

Expected Result:

VerySimpleTest(class)>>#classParentExistTest - START

VerySimpleTestParent(class)>>#classParentExistTest

VerySimpleTest(class)>>#classParentExistTest - END

VerySimpleTest(class)>>#classParentAbsentTest - START

visualworks.DoesNotUnderstand: classParentAbsentTest

VerySimpleTest(class)>>#classParentAbsentExistClassTest - START

visualworks.DoesNotUnderstand: classParentAbsentExistClassTest

VerySimpleTest(class)>>#classParentAbsentExistInstanceCurrentTest - START

visualworks.DoesNotUnderstand: classParentAbsentExistInstanceCurrentTest

Generating Java Class Files from Smalltalk Objects Page 52

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

6.4.14 Smalltalk Translated new (i.e. object construction without Java’s new)

Smalltalk Source:

VerySimpleTestChild(class)>>#new
^super new

Java Driver Program:

Test14.java:

System.out.println(visualworks.Smalltalk.at_(
“VerySimpleTestChild”)._new().toString());

Expected Result:

visualworks.VerySimpleTestChild

6.4.15 Messaging a Smalltalk Constructed Object

Smalltalk Source:

VerySimpleTestChild(class)>>#new
^super new

VerySimpleTest>>#useBlock
['VerySimpleTest - inside the block'] value.
^'VerySimpleTest - after the block'

Java Driver Program:

Test15.java:

System.out.println(visualworks.Smalltalk.at_(
“VerySimpleTestChild”)._new().useBlock().toString());

Expected Result:

VerySimpleTest - after the block

6.4.16 Chaining Messages Sends

Smalltalk Source:

VerySimpleTest>>#chainedMessageTest
^self setInstVar getInstVar

Generating Java Class Files from Smalltalk Objects Page 53

 copyright Andrew Eidsness, 1997-1999 April 19, 1999
aeidsness@acm.org

VerySimpleTest>>#setInstVar
anInstVar := ‘an instance variable value’

VerySimpleTest>>#getInstVar
^anInstVar

Java Driver Program:

Test16.java:

visualworks.Object vst = new visualworks.VerySimpleTest();
System.out.println(vst.chainedMessageTest().toString());

Expected Result:

an instance variable value

